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Abstract. We prove that for all integers 2 ≤ m ≤ d− 1, there exist doubling measures

on Rd with full support that are m-rectifiable and purely (m−1)-unrectifiable in the sense

of Federer (i.e. without assuming µ ≪ Hm). The corresponding result for 1-rectifiable

measures is originally due to Garnett, Killip, and Schul (2010). Our construction of

higher-dimensional Lipschitz images is informed by a simple observation about square

packing in the plane: N axis-parallel squares of side length s pack inside of a square of

side length ⌈N1/2⌉s. The approach is robust and when combined with standard metric

geometry techniques allows for constructions in complete Ahlfors regular metric spaces.

One consequence of the main theorem is that for each m ∈ {2, 3, 4} and s < m, there exist

doubling measures µ on the Heisenberg group H1 and Lipschitz maps f : E ⊂ Rm → H1

such that µ ≪ Hs−ϵ for all ϵ > 0, f(E) has Hausdorff dimension s, and µ(f(E)) > 0.

This is striking, because Hm(f(E)) = 0 for every Lipschitz map f : E ⊂ Rm → H1 by a

theorem of Ambrosio and Kirchheim (2000). Another application of the square packing

construction is that every compact metric space X of Assouad dimension strictly less

than m is a Lipschitz image of a compact set E ⊂ [0, 1]m. Of independent interest,

we record the existence of doubling measures on complete Ahlfors regular metric spaces

with prescribed lower and upper Hausdorff and packing dimensions.
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1. Introduction

In geometric measure theory, a fundamental problem is to detect the interaction of
measures in Rd or metric space X with various canonical families of lower-dimensional
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sets such as rectifiable curves or C1 submanifolds; see the surveys [Bad19] and [Mat23]
for a detailed introduction to this topic and [AM22, Bat22, BHS23, FL23] for some of the
latest advances. Questions that we might ask include: When does every set in the family
have measure zero? When does some set in the family have positive measure? Classically,
this problem was exclusively investigated within the class of Radon1 measures µ on Rd

satisfying

(1.1) 0 < lim sup
r↓0

µ(B(x, r))

rm
< ∞ µ-a.e.,

where 1 ≤ m ≤ d−1 is the dimension of the model sets and B(x, r) denotes the closed ball
with center x and radius r; some highlights include [MR44, Fed47, Pre87]. In particular,
any measure satisfying (1.1) is strongly m-dimensional in the sense that µ(E) = 0 for
every set E with Hm(E) = 0, but there exists a set F such that Hm F is σ-finite and
µ(Rd \ F ) = 0; see e.g. [BLZ23, §2.2]. For the definition of the s-dimensional Hausdorff
measure Hs and its basic properties, see e.g. [Rog98] or [Mat95]. Over the last decade,
there has emerged an effort to study the concept of rectifiability within the larger class of
arbitrary locally finite measures, without imposing the condition (1.1). We now possess
complete pictures of the interaction of Radon measures in Rd with rectifiable curves [BS17]
(also see [Ler03, GKS10, BS15, AM16, BS16, MO18, BLZ23]) and with m-dimensional
Lipschitz graphs [BN21, Dab22] for arbitrary 1 ≤ m ≤ d − 1. In both cases, the general
solution was obtained after first studying the problem for doubling measures.

In this paper, we report some initial progress on the problem of testing when a Radon
measure assigns full measure to a countable family of m-dimensional Lipschitz images.
We leverage a new construction of Lipschitz maps from subsets of Rm, m ≥ 2 (see §2).
Consistent with the convention used by Federer [Fed69, §3.2.14], we say that a Borel
measure µ on a metric space X is m-rectifiable if there exist bounded sets Ei ⊂ Rm

and Lipschitz maps fi : Ei → X such that µ(X \
⋃∞

1 fi(Ei)) = 0. We say that µ is
purely m-unrectifiable if µ(f(E)) = 0 for every bounded set E ⊂ Rm and Lipschitz map
f : E → X. By standard Lipschitz extension theorems, when X = Rd, one may replace the
domain of the maps with [0, 1]m or Rm or with arbitrary sets E ⊂ Rm without changing
the class of rectifiable measures. Note that every m-rectifiable measure is automatically
(m+ 1)-rectifiable by considering maps of the form F (x1, . . . , xm, xm+1) = f(x1, . . . , xm).
A measure µ on X is doubling if (1.2) below holds for some constant 1 ≤ D < ∞. We
say that X is Ahlfors q-regular if q ∈ [0,∞) and there exists a constant C > 1 such that
C−1rq ≤ Hq(B(x, r)) ≤ Crq for all x ∈ X and 0 < r < diamX. Our goal is to prove:

Theorem 1.1. Let X be a complete Ahlfors q-regular metric space. For all integers m ≥ 1
with q > m − 1, there exists a doubling measure µ on X such that µ is m-rectifiable and
purely (m− 1)-unrectifiable.

More precisely, for all integers m ≥ 1 with q > m−1 and for all real-valued dimensions
0 < sH ≤ sP < q with m − 1 < sP < m, we can find a Radon measure µ on X and a

1On any proper metric space X, i.e. a metric space in which closed balls are compact, a Radon measure

µ is a Borel measure that is finite on bounded sets; see e.g. [Fol99, Chapter 7].
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constant 1 ≤ D < ∞ depending only on X, sH , and sP such that

(1.2) 0 < µ(B(x, 2r)) ≤ Dµ(B(x, r)) < ∞ for all x ∈ X and r > 0;

(1.3) lim inf
r↓0

log µ(B(x, r))

log r
= sH at µ-a.e. x ∈ X;

(1.4) lim sup
r↓0

log µ(B(x, r))

log r
= sP at µ-a.e. x ∈ X;

(1.5) µ(f(E)) = 0 whenever f : E ⊂ Rm−1 → X is Lipschitz;

(1.6) there exist Lipschitz maps fi : Ei ⊂ Rm → X such that µ (X \
⋃∞

1 fi(Ei)) = 0.

When X = Rd and 1 ≤ m ≤ d− 1, we also know that

(1.7) µ(g(Rm)) = 0 whenever g : Rm → Rd is a bi-Lipschitz embedding.

The existence of a Radon measure µ on Rd satisfying (1.2), (1.6), and (1.7) with m = 1
is due to Garnett, Killip, and Schul [GKS10] (see the sentence “In closing...” on p. 1678).
There is vast ocean between the cases m = 1 and m ≥ 2 insofar as a simple metric
characterization2 of Lipschitz curves has been known since the 1920s, but no such result is
available for higher-dimensional Lipschitz images. The best parameterization method for
m-dimensional surfaces currently available when m ≥ 2 is David and Toro’s bi-Lipschitz
variant of the Reifenberg algorithm [DT12, ENV19], but a bi-Lipschitz technique is useless
for proving Theorem 1.1 because (1.7) holds for any measure on Rd satisfying the doubling
property (1.2). Property (1.3) is equivalent to the statement that there exists a Borel set
F ⊂ X of Hausdorff dimension sH such that µ(X \F ) = 0 and µ(E) = 0 whenever E ⊂ X
is a Borel set of Hausdorff dimension less than sH . Property (1.4) is equivalent to the
same assertion with Hausdorff dimension replaced by packing dimension (see §4.2). Since
Lipschitz maps do not increase packing dimension, (1.4) implies (1.5) when sP > m− 1.

Example 1.2. We emphasize that Theorem 1.1 makes no assumptions on the connectedness
properties of the metric space.

(1) There exist doubling measures µ on R3 of Hausdorff dimension sH = 0.0001 and
packing dimension sP = 1.9999 that are 2-rectifiable and purely 1-unrectifiable.
In fact, the measures can take the form of generalized Bernoulli products (see §5).

(2) Any compact self-similar set of Hausdorff dimension q in Rd that satisfies the open
set condition is Ahlfors q-regular and supports a ⌈q⌉-rectifiable doubling measure
that is purely (⌈q⌉−1)-unrectifiable. This large family of examples includes Cantor
sets, which are totally disconnected.

(3) The Koch snowflake curve in R2 contains no non-trivial rectifiable subcurves, but is
Ahlfors log3(4)-regular. Thus, the snowflake curve supports 1-rectifiable doubling
measures of Hausdorff and packing dimension 1− ϵ for any ϵ > 0.

2Ważewski’s Theorem: Let X be a metric space and let Γ ⊂ X be nonempty. Then Γ = f([0, 1]) for

some Lipschitz map f : [0, 1] → X if and only if Γ is compact, connected, and H1(Γ) < ∞. See [AO17].
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(4) When I = [0, 1]m is equipped with the snowflake metric d(x, y) = |x − y|m/s for
some s > m, the space I is Ahlfors s-regular and Hs I is purely m-unrectifiable
(because s > m). Nevertheless, I supports an m-rectifiable doubling measure that
is purely (m− 1)-unrectifiable.

(5) The first Heisenberg group H1 is a nonabelian Carnot group that is topologically
equivalent to R3, but equipped with a metric so that H1 has Hausdorff dimension
4 and is Ahlfors 4-regular. By [AK00, Theorem 7.2], the Hausdorff measures
Hm H1 are purely m-unrectifiable for all m ∈ {2, 3, 4}. For further results on
non-embedding of Rm into Heisenberg groups, see e.g. [HS23] and the references
therein. Even so, for all m ∈ {2, 3, 4} and s < m, there exist doubling measures
µ on H1 and Lipschitz maps f : E ⊂ Rm → H1 such that µ ≪ Hs−ϵ for all ϵ > 0,
dimH f(E) = s, and µ(f(E)) > 0. That is, doubling measures on H1 can charge
Lipschitz images of Euclidean spaces of almost maximal dimension.

(6) Let X = L ∪ Q be the union of a line segment L = [0, 1] × {0}2 and a cube
Q = [1, 2] × [0, 1]2, equipped with the subspace metric from R3. While the space
X is not Ahlfors q-regular for any q, it is complete, doubling, and dimH X = 3.
Since Q is Ahlfors 3-regular, there exists a doubling measure ν with spt ν = Q
that is 2-rectifiable and purely 1-unrectifiable. The measure µ := ν +H1 L has
sptµ = X, µ is 2-rectifiable, and µ is not 1-rectifiable. However, µ is not purely
1-unrectifiable, because µ L is (trivially!) 1-rectifiable.

The following seems plausible, but is beyond the scope of the present paper. Also see
Conjecture 5.8 for a related open problem.

Conjecture 1.3. Theorem 1.1 also holds when sP = m− 1, sP = m, or sP = q.

Our construction of the Lipschitz maps from (subsets of) Rm into metric spaces X is
informed by the following simple observation about square packings.

Lemma 1.4. Let m, k ≥ 2 be integers. Any collection of km axis-parallel cubes in Rm of
descending side lengths s0 ≥ s1 ≥ · · · ≥ sk ≥ sk+1 ≥ · · · ≥ skm−1 can be packed inside an
axis-parallel cube of side length

(1.8) s = s0m + s1m + s2m + · · ·+ s(k−1)m .

When k = 2, this is the best possible bound, independent of the values of s2, . . . , s2m−1.

Proof. Let Q0, . . . , Qkm−1 denote the cubes in the hypothesis. Create a k × · · · × k︸ ︷︷ ︸
m

grid of

auxiliary cubes indexed by tuples {0, . . . , k− 1}m, where the cube in position (i1, . . . , im)
has side length si(i1,...,im),

(1.9) i(i1, . . . , im) := max{i1, . . . , im}m.

See Figure 1.1. Inside of the grid, there are (j + 1)m − jm cubes of side length sjm for
each 0 ≤ j ≤ k − 1. Because we have sjm ≥ sjm+k for all k ≥ 0, the (j + 1)m − jm

original cubes Qjm , . . . , Q(j+1)m−1 may be arranged in one-to-one fashion to sit inside of
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Figure 1.1. The 3×3 grid in the proof of Lemma 1.4 when m = 2, k = 3,
and s0 > s1 = s2 = s3 > s4 = s5 = s6 = s7 = s8.

the (j+1)m− jm auxiliary cubes with i(i1, . . . , im) = jm. By design, the grid of auxiliary
cubes pack inside a cube of side length given by (1.8). Thus, so do the original cubes.

For the final claim, simply note that the side length of any cube Q in Rm that contains
both Q0 and Q1 is at least s0 + s1. □

Corollary 1.5. It is possible to pack between (k − 1)m + 1 and km cubes in Rm of equal
side length s into a cube of side length

(1.10) ks = ⌈m-th root of number of cubes⌉ · side length of a cube.

Remark 1.6. By now classical results of Moon and Moser [MM67] (m = 2) and Meir and
Moser [MM68] (m ≥ 3), any countable set of cubes in Rm of total volume V can be packed
inside a cube of total volume 2m−1V . Even though they are simple, the preceding results
indicate that total area of a list of squares is not a useful quantity for determining an
optimal square packing. See Figure 1.2.

Remark 1.7. More generally, consider the following 2-dimensional embedding problem for
trees of sets in a metric space (there are a variety of possible definitions, see e.g. [BV19,
§2] or Definition 2.1 in the next section): Given a tree of sets T in a metric space X, build
(if it is possible to do so) a combinatorially equivalent tree S of nested squares in the

plane and a map Q ∈ T S7→ SQ ∈ S such that (i) SR ⊂ SQ whenever R is a descendant
of Q in T and (ii) diamSQ ≥ diamQ for all Q ∈ T . Furthermore, assuming that at least
one solution exists, minimize the side length of STop(T ).

Based on [BS16, §3], which handled a related 1-dimensional problem, one might naively
guess that

∑
Q∈T (diamQ)2 < ∞ implies existence of the tree S and map S.3 However,

the inadequacy of area for optimal square packings gives us a clear reason why this cannot

3When X is locally quasiconvex, we now know that
∑

Q∈T (diamQ)2 < ∞ implies there exists a Hölder

continuous map f : [0, 1] → X with |f(x) − f(y)| ≤ H|x − y|1/2 for all x, y ∈ [0, 1] such that f([0, 1])

contains Leaves(T ); see [BV19, BZ20]. For further related results, see [AS18, BNV19, Hyd22].
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Figure 1.2. Left: squares with side lengths s0 > s1 = s2 = s3. Right:
squares with side lengths s0 > s1 > s′2 > s′3. Both sets of squares fit inside
of a square of side length s = s0 + s1. Adjusting the side lengths so that
s1 ≈ s0 and s′2, s

′
3 ≪ s0, the ratio of the total area of the four squares on

the left to the total area of the corresponding squares on the right can be
made arbitrarily close to 2. Thus, scaling the picture on the right, there are
lists of squares with the same total area, but different optimal packings.

be the case. A better candidate for a sufficient test for existence based on Corollary 1.5
appears to be finiteness of the maximal total diameter of sets in a subtree formed by
keeping only square root many children of each set in the tree (rounded up).

For a concrete example, let us construct a tree T =
⋃∞

n=0 Tn of axis-parallel cubes in R3

as follows. Initialize T0 = {[0, 1]3}. Assume that Tn−1 has been defined for some n ≥ 1.
For each Q ∈ Tn−1, include 9 subcubes Q1, . . . , Q9 of Q of side length sn = 1

n
3−n in the

set Tn (8 subcubes in the corners, 1 subcube in the center). In the n-th level Tn of the
tree, there are 9n cubes of diameter

√
3sn, where s0 = 1. On the one hand,

(1.11)
∑
Q∈T

(diamQ)2 = 3 +
∞∑
n=1

9n · 3s2n = 3 +
∞∑
n=1

3

n2
< ∞.

Thus, the Cantor set E1 :=
⋂∞

n=0

⋃
Q∈Tn Q of the leaves of the tree T has H2(E1) = 0.

Moreover, it can be shown that E1 has Hausdorff dimension 2. On the other hand, suppose
that T 1/2 is any subtree of T such that the number of children of a cube in T 1/2 is the
square root of the number of children of that cube in T . Then

(1.12)
∑

Q∈T 1/2

diamQ ≥
∞∑
n=1

√
9n ·

√
3sn =

∞∑
n=1

√
3

n
= ∞.

Appealing to Corollary 1.5, we see that T cannot be represented as a tree S of nested
squares with diamSQ ≥ diamQ for all Q ∈ T , because the maximal square S[0,1]3 in S
would need to have infinite side length by (1.12).

Remark 1.8. The Cantor set E1 ⊂ R3 described in the previous remark is not contained
in a Lipschitz image of R2; a robust proof of this fact was communicated to the authors
by G. Alberti and M. Csörnyei in 2019.
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Remark 1.9. Let α > 1. Modify the tree in Remark 1.7 so that the cubes in Tn have side
length sn = 1

nα3
−n when n ≥ 1. Each cube Q ∈ Tn has Nn = 9 children and diameter

Dn =
√
3sn. Since α > 1, it follows that

(1.13) Sα :=
∞∑
j=0

(
j∏

i=0

⌈N1/2
i ⌉

)
Dj =

∞∑
j=0

3j+1Dj = 3
√
3 + 3

√
3

∞∑
j=1

1

nα
< ∞.

Therefore, by Theorem 2.5 / Corollary 2.8, the Cantor set Eα =
⋂∞

n=0

⋃
Tn is contained

in the image of an Sα-Lipschitz map f : [0, 1]2 → R3. An example of this kind was found
by the first author and V. Vellis in 2019. It helped lead to the results in §2.

Remark 1.10. Each of the Cantor sets E1 and Eα (α > 1) are H2 null sets of Hausdorff
dimension 2. One possible interpretation of the existence / non-existence of Lipschitz
maps is that the sets Eα are (distorted) copies of null sets from R2 inside of R3, whereas
the set E1 is a “new” 2-dimensional null set in R3 that does not exist in R2.

The rest of the paper is organized as follows. In §2, we show how to use Lemma 1.4 to
build Lipschitz images of [0, 1]m containing the leaves of a tree of sets in a metric space.
Simple applications to measures with positive lower density and finite upper density and
to sets with small Assouad dimension are given in §3. The second half of the paper is
devoted to the proof of the main theorem. In §4, we provide necessary background on
the geometry of metric spaces and dimension of measures. In §5, we define and establish
basic estimates for a family of quasi-Bernoulli measures µs on a complete Ahlfors q-regular
metric space X, where s = (sk)k≥1 is a sequence of “target dimensions”. These measures
are variants of the classic Bernoulli products on [0, 1]. When s∗ = infk≥1 sk > 0, the
measure µs is doubling, and when s = limk→∞ sk < q, the measure µs has exact Hausdorff
and packing dimension s. In §6, we record the proof of Theorem 1.1. In particular, we
use the “square packing construction” of Lipschitz maps to show that when s < m, the
measure µs is m-rectifiable.

Remark 1.11 (prevalent notation). Throughout the paper, we use the letters i, j, k, l, n
interchangeably for indexing countable families, but reserve the letter m for the dimension
of Euclidean cube packings or the dimension of Euclidean space in the domain of Lipschitz
maps f : E ⊂ Rm → X that appear in the definition of m-rectifiable measures. We
always write d for the dimension of Euclidean space in the event of a Euclidean codomain
X = Rd. The letter b is used exclusively for the scaling factor b > 1 in a family of metric
b-adic cubes and the letter q is used exclusively for the dimension of an Ahlfors regular
metric space. The letter s generally refers to the dimension of a Hausdorff measure
Hs or packing measure Ps, but is sometimes used for side length of a square or cube.
Greek letters such as δ, ϵ, τ represent errors or small parameters and usually take values
in the range (0, 1), except for µ and ν, which are reserved for measures. We write cp1,p2,...
and Cp1,p2,... to denote indeterminate positive and finite constants with values that can
be bounded above and below using the listed parameters p1, p2, . . . . As is nowadays
common, the notation x ≲p1,p2,... y is short hand for x ≤ Cp1,p2,...y, when we don’t need
to manipulate Cp1,p2,... in subsequent expressions. The notation x ≪ y or y ≫ x is
sometimes used for emphasis and is meant to be read as “x is much smaller than y” or
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“y is much larger than x”. We typically denote the underlying distance between points
x and y in a metric space by |x − y|. The diameter of a nonempty set E in a metric
space is diamE := sup{|x − y| : x, y ∈ E}. The gap between nonempty sets A and B
in a metric space is gap(A,B) := inf{|x − y| : x ∈ A, y ∈ B}. (This terminology comes
from variational analysis. The notation dist(A,B) is used more often in the literature,
but “distance” is problematic, since dist(A,C) ≤ dist(A,B) + dist(B,C) usually fails.)
Finally, just in case it is not familiar to the reader, we mention that the ceiling of a real
number x is ⌈x⌉ := inf{n ∈ Z : x ≤ n}.

Acknowledgements. Research for this project began in 2020, during the early days of
the COVID-19 pandemic. The authors thank their family members—Matt, Maya, Naomi,
and Mikael—for patience with mathematical discussions over online meetings from home.
We also thank Pablo Shmerkin and Boris Solomyak for explaining (5.3) and their help in
locating references. Finally, the authors are grateful to the referee for their comments on
an earlier draft of this manuscript.

2. Square packings and Lipschitz maps

Because it requires no more effort, we adopt a very weak definition of a tree of sets in a
metric space that allows for overlap and repetition. The only coherence condition is that
each set is contained in its parent.

Definition 2.1. Let X be a metric space. We call T =
⊔∞

j=0 Tj a tree of sets in X if

• Tj is a finite multiset4 of nonempty subsets of X for all j ≥ 0;
• #T0 = 1 (counting multiplicity); and,
• there is a function ↑:

⊔∞
j=1 Tj → T such that Q ⊂ Q↑ ∈ Tj−1 for all j ≥ 1 and

Q ∈ Tj.

We call Q↑ the parent of Q and call Q a child of Q↑. For all j ≥ 0 and Q ∈ Tj, we let
Child(Q) := {R ∈ Tj+1 : Q = R↑} denote the set of children of Q. We denote the unique
set in T0 by Top(T ). An infinite branch in T is a sequence of sets Qj ∈ Tj such that
Qj+1 ∈ Child(Qj) for all j ≥ 0. Finally, the set of leaves of T is defined by

(2.1) Leaves(T ) :=
∞⋂
j=0

⋃
Q∈Tj

Q.

Remark 2.2. Let T be a tree of sets in a metric space X. If every set Q ∈ T is closed,
then Leaves(T ) is closed. If every set Q ∈ T is Borel, then Leaves(T ) is Borel.

Recall that a map f between metric spaces is L-Lipschitz if |f(x) − f(y)| ≤ L|x − y|
for all x and y in the domain of f . Here and throughout the paper, we use the convention

4A finite multiset is a finite unordered list with repetition allowed. For example, {1, 2, 2} and

{1, 1, 2, 2, 2} are multisets with 3 and 5 elements, respectively. Their disjoint union {1, 2, 2}⊔{1, 1, 2, 2, 2}
is the multiset {1, 1, 1, 2, 2, 2, 2, 2} with 8 elements. A function between multisets is a function between

sets formed by assigning any repeated elements a different color. For example, we could define an injective

function f : {1, 2, 2} → {1, 1, 2, 2, 2, 2} by forming sets {1, 2, 2} and {1, 1, 2, 2, 2, 2} and defining f(1) = 2,

f(2) = 2, and f(2) = 2.
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Figure 2.1. Illustration of the domain of the Lipschitz map f in the
“square packing construction” with dimension m = 2, tree depth l = 2,
and the maximal number of children of sets in T0 and T1 given by N0 = 16
and N1 = 25, respectively. The side length of each of yellow square is D1

and the side length of each “block” of yellow squares is (⌈N1/2
1 ⌉ − 1)D1.

The side length of each blue square is equal to the side length of a yellow
block plus D0. All together, the domain sits inside a square of side length

(⌈N1/2
0 ⌉ − 1)D0 + ⌈N1/2

0 ⌉(⌈N1/2
1 ⌉ − 1)D1.

that | · − · | denotes distance between points in the appropriate metric. We let ℓmp denote
Rm equipped with the ℓp norm. In particular, ℓm2 and ℓm∞ are equipped with the standard
Euclidean norm and the supremum norm, respectively.

Lemma 2.3 (square packing construction of Lipschitz maps). Let T =
⊔∞

j=0 Tj be a tree
of sets in a metric space X. For each j ≥ 0, assign

(2.2) Nj := max
Q∈Tj

#Child(Q) and Dj := max
Q∈Tj

diamQ.

Let m, l ≥ 1 be integers and suppose that Tl ̸= ∅. Compute the finite quantity

(2.3) s :=
l−1∑
j=0

(
j−1∏
i=0

⌈N1/m
i ⌉

)
(⌈N1/m

j ⌉ − 1)Dj.

(When j = 0,
∏j−1

i=0⌈N
1/m
i ⌉ = 1.) For any multiset F = {xQ ∈ Q : Q ∈ Tl}, there exists a

set E ⊂ ℓm∞ ∩ [0, s]m with #E = #F < ∞ and a bijective 1-Lipschitz map f : E → F .

Proof. Let T , m, l, and F be given. We want to build a 1-Lipschitz map f whose image
is F . Fix any coloring on F . For each point x′ ∈ F , we must decide how to place a
point x = g(x′) in Rm such that for every pair of points x′, y′ ∈ F on the image side
of f , we have |x − y| ≥ |x′ − y′| on the domain side of f . (That is, g must be distance
non-decreasing.) The familial relationships in T , the quantities Nj and Dj, and Lemma
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1.4 will tell us one way that we can accomplish this. Further, the assignment g from
points in F to points in Rm will be one-to-one. Once we have placed a point x in Rm for
each x′ ∈ F , we simply assign E := g(F ) and define f : E → F to be the inverse of the
bijection g : F → E. The map f is 1-Lipschitz, because |f(x)− f(y)| = |x′− y′| ≤ |x− y|
by the stipulation above.

The description of the assignment g is recursive. Suppose that we know how to do the
construction for trees of depth l − 1. Let Tl be nonempty and let F = {xQ : Q ∈ Tl}.
Then the truncated tree

⊔l
j=0 Tj is a disjoint union of N0 = #Child(Top(T0)) = #T1

trees T 1, · · · , T N0 of depth l − 1, where {Top(T i) : 1 ≤ i ≤ N0} = Child(Top(T0)) = T1.
Notice that the j-th level of any T i is made up of sets belonging to the (j + 1)-st level
of T . Hence Nj(T i) ≤ Nj+1(T ) and Dj(T i) ≤ Dj+1(T ) for all 0 ≤ j ≤ l − 2. Write

F =
⊔N0

i=1 F
i, where F i = {xQ : Q ∈ Tl descends fromTop(T i)}. Since we know how to

do the construction for trees of depth l − 1, for each index 1 ≤ i ≤ N0, we can find a set
Ei ⊂ Rm and an injective 1-Lipschitz map fi : Ei → X such that f(Ei) = Fi and Ei is
contained in some cube Si in Rm of side length at most sl−1 for some number sl−1 > 0
depending only on m and N1, . . . , Nl−1 and D1, . . . , Dl−1. (Assuming momentarily that
(2.3) is correct, then

(2.4) sl−1 :=
l−2∑
j=0

(
j−1∏
i=0

⌈N1/m
i+1 ⌉

)
(⌈N1/m

j+1 ⌉ − 1)Dj+1 =
l−1∑
j=1

(
j−1∏
i=1

⌈N1/m
i ⌉

)
(⌈N1/m

j ⌉ − 1)Dj

will suffice.) By Lemma 1.4, we can pack a collection of
(
⌈N1/m

0 ⌉ − 1
)m

“blue” cubes of

side length (sl−1 + D0) and ⌈N1/m
0 ⌉m −

(
⌈N1/m

0 ⌉ − 1
)m

“red” cubes of side length sl−1

inside a cube of side length

(2.5) sl := (⌈N1/m
0 ⌉ − 1)(sl−1 +D0) + sl−1 = ⌈N1/m

0 ⌉sl−1 + (⌈N1/m
0 ⌉ − 1)D0.

Moreover, as in the proof of the lemma, we can arrange things so that the red cubes
sit “to the right” of the blue cubes in each coordinate and any two distinct red cubes
are separated by a distance at least the side length of a blue cube minus the side length
of a red cube. See Figure 1.1, focusing only on the blue and red squares. To proceed,
place translated copies S⃗i of the cubes Si (and hence translated copies E⃗i of the sets Ei)
inside the collection of blue and red cubes in a one-to-one fashion. We can always do

this, because N0 ≤ ⌈N1/m
0 ⌉m and the side length of any Si is less than or equal to the

side length of a blue or red cube. In Figure 2.1, the cubes S⃗i are the “yellow blocks”;
the yellow blocks on the right and top of the figure cover the red cubes. When placing a
cube S⃗i inside a blue cube, let’s stipulate that we place S⃗i as far “to the left” as possible
in each coordinate. This ensures than any two distinct S⃗i are separated by a distance at
least D0. We now define E =

⋃N0

i=1 E⃗i and define f : E → F by setting f |E⃗i
(x⃗) = fi(x)

for all 1 ≤ i ≤ N0 and all x⃗ ∈ E⃗i, where x is the unique point in Ei corresponding to x⃗.
The map f is injective (as a multiset map), because each fi is injective and their targets

Fi are disjoint inside of F (with the fixed coloring). Next, let’s check that f is 1-Lipschitz.

Let x⃗, y⃗ ∈ E. If x⃗ and y⃗ both belong to E⃗i for some i, then |f(x⃗)−f(y⃗)| = |fi(x)−fi(y)| ≤
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|x−y| = |x⃗− y⃗|, because fi is 1-Lipschitz and translation is an isometry. Suppose instead

that x⃗ ∈ E⃗i and y⃗ ∈ E⃗j for some i ̸= j. Then |x⃗− y⃗| ≥ D0 = diamTop(T ) ≥ |f(x⃗)−f(y⃗)|.
In both cases, we checked that |f(x⃗)− f(y⃗)| ≤ |x⃗− y⃗|. Thus, f is 1-Lipschitz, as claimed.

Solving the recurrence relation (2.5) with initial condition s0 = 0 yields (2.3). (If l = 0,
then F = {xTop(T )} consists of a single point and the domain E = {0} of f is a “cube” of

side length s0 = 0. Note that sl−1 = (⌈N1/m
1 ⌉)sl−2 + (⌈N1/m

1 ⌉ − 1)D1, etc.) Alternatively,
one may verify (2.3) using induction. Indeed, substituting (2.4) into (2.5), we have

sl = ⌈N1/m
0 ⌉sl−1 + (⌈N1/m

0 ⌉ − 1)D0

=

(
l−1∑
j=1

(
j−1∏
i=0

⌈N1/m
i ⌉

)
(⌈N1/m

j ⌉ − 1)Dj

)
+ (⌈N1/m

0 ⌉ − 1)D0

=
l−1∑
j=0

(
j−1∏
i=0

⌈N1/m
i ⌉

)
(⌈N1/m

j ⌉ − 1)Dj. □

Lemma 2.4 (each leaf sits at the end of a branch). Let T =
⊔∞

j=0 Tj be a tree of sets in a

metric space X. For each j ≥ 0, let Dj be given by (2.2). If limj→∞ Dj = 0, then for each
z ∈ Leaves(T ), there exists an infinite branch (Qz

j)
∞
j=0 in T such that {z} =

⋂∞
j=0Q

z
j .

Proof. Let z ∈ Leaves(T ). Since #Tj < ∞ for all j ≥ 0, there exists an infinite branch
(Qz

j)
∞
j=0 in T such that z ∈

⋂∞
j=0Q

z
j by König’s lemma; see e.g. [Fra97] or [Mos09, p. 190].

Further, since every child is contained in its parent, diam
⋂∞

j=0Q
z
j ≤ limj→∞Dj = 0. □

Theorem 2.5 (sufficient condition for the set of leaves to lie in a Lipschitz image). Let
T =

⊔∞
j=0 Tj be a tree of sets in a metric space X. For each j ≥ 0, let Nj and Dj be given

by (2.2). If the closure of Top(T ) is compact and

(2.6) S :=
∞∑
j=0

(
j∏

i=0

⌈N1/m
j ⌉

)
Dj < ∞,

then there exists a compact set E ⊂ ℓm∞ ∩ [0, 1]m and a S-Lipschitz map f : E → X such
that f(E) contains Leaves(T ).

Proof. Replacing X with Top(T ), we may assume without loss of generality that X is
compact. Further, we may assume that Leaves(T ) ̸= ∅, otherwise there is nothing to
show. In particular, Tl is nonempty for all l ≥ 0. Note that the quantity s = s(l) in
(2.3) is bounded above by S in (2.6) for all l ≥ 1. For each l ≥ 1, choose any set
Fl = {xQ : Q ∈ Tl and Child(Q) ̸= ∅}. After rescaling the domains of maps provided by
Lemma 2.3, for each l ≥ 1, we can find a finite set El ⊂ ℓm∞ ∩ [0, 1]m and an S-Lipschitz
map fl : El → X such that fl(El) = Fl.

To proceed, we employ a variation of the proof of the Arzelà-Ascoli theorem for a
sequence of uniformly equicontinuous functions with variable domains. Let Y = [0, 1]m×X
be equipped with the product metric and let the space C(Y) of nonempty closed subsets
of Y be equipped with the Hausdorff metric. Since [0, 1]m and X are compact, so are Y
and C(Y); see e.g. [Bee93]. The latter fact is often called Blaschke’s selection theorem.
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Thus, the sequence of graphs Γl = {(x, fl(x)) : x ∈ El} in C(Y) have a subsequence Γli

that converge to some set Γ in C(Y) as i → ∞. We claim that Γ is also a graph. Indeed,
suppose that (x, y) and (x, y′) belong to Γ. Then we can find sequences xi, x

′
i ∈ Eli such

that (xi, fli(xi)) → (x, y) and (x′
i, fli(x

′
i)) → (x, y′) in Y as i → ∞. Hence, by the uniform

Lipschitz condition,

|y − y′| ≤ lim inf
i→∞

|fli(xi)− fli(x
′
i)| ≤ lim inf

i→∞
S|xi − x′

i| = 0.

Write E = {x : (x, y) ∈ Γ} ⊂ [0, 1]m and define f : E → X according to the rule
(x, f(x)) ∈ Γ for all x ∈ E. The domain E is compact, because Γ is compact. It is easy to
see that f is S-Lipschitz. Given x, x′ ∈ E, there exist sequences (xi, fli(xi)) → (x, f(x))
and (x′

i, fli(x
′
i)) → (x′, f(x′)) in Y as i → ∞. Therefore,

|f(x)− f(x′)| = lim
i→∞

|fli(xi)− fli(x
′
i)| ≤ lim inf

i→∞
S|xi − x′

i| = S|x− x′|.

Finally, the image set f(E) contains Leaves(T ) by Lemma 2.4 and compactness of Y.
Indeed, we may use the lemma, because

∑∞
j=0Dj ≤ S < ∞ implies limj→∞Dj = 0. Thus,

given z ∈ Leaves(T ), there exists an infinite branch (Qz
j)

∞
j=0 in T such that {z} =

⋂∞
j=0 Q

z
j .

In particular, the points zi := xQz
li
∈ Fli converge to z in X as i → ∞. For each i, choose

any point xi ∈ Eli such that fli(xi) = zi. Since we do not assume each fli is injective, there
is no reason to suspect that the sequence xi converges. Nevertheless, by compactness of Y,
we may find a subsequence (xij , zij) that converges to some point (x, y) ∈ Y as j → ∞. Of
course, y = z, since zij → z as j → ∞. Further, since (xij , zij) ∈ Γlij

for all j and Γlij
→ Γ

in C(Y) as j → ∞, the limit point (x, z) ∈ Γ. That is, x ∈ E and z = f(x) ∈ f(E). □

Remark 2.6 (no rounding). If C =
∑∞

i=0N
−1/m
i < ∞, then

(2.7) S ≤ eC
∞∑
j=0

(
j∏

i=0

N
1/m
j

)
Dj,

because ⌈x⌉ ≤ (1 + x−1)x for all x > 0 and
∏∞

i=0(1 + N
−1/m
i ) ≤ eC . Thus, to check the

hypothesis of Theorem 2.5 on a tree, in which the maximum number of children Nj → ∞
quickly as j → ∞, we can effectively ignore the ceiling function in (2.6). We will use this
observation in §6.

Remark 2.7. Let 1 ≤ p < ∞. Because ∥x∥∞ ≤ ∥x∥p for all x ∈ Rm, both Lemma 2.3 and
Theorem 2.5 remain valid with the domain of the map f in the conclusion replaced by a
set E ⊂ ℓmp ∩ [0, s]m or E ⊂ ℓmp ∩ [0, 1]m, respectively.

Corollary 2.8 (Lipschitz maps from ℓm2 ). In addition to the hypothesis of Lemma 2.3
or Theorem 2.5, suppose that X is a Hilbert space. In the first setting, there exists a
1-Lipschitz map g : ℓm2 ∩ [0, s]m → X such that g([0, s]m) ⊃ F . In the second setting, there
exists a S-Lipschitz map g : ℓm2 ∩ [0, 1]m → X such that g([0, 1]m) ⊃ Leaves(T ).

Proof. Let f : E → X be given by Lemma 2.3, taking the domain E ⊂ ℓm2 ∩ [0, S]m. Since
X is a Hilbert space, we may apply Kirzbraun’s theorem [Fed69, 2.10.43] to extend f to
a 1-Lipschitz map h : ℓm2 → X. Then the restriction g := h|ℓm2 ∩[0,S]m is 1-Lipschitz and
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Figure 2.2. Modified construction of the Lipschitz map f in Lemma 2.3
with dimension m = 2, tree depth l = 2, and maximal number of children
of sets in T0 and T1 given by N0 = N1 = 5. The side length of each of
yellow square is D1 and the side length of each “block” of yellow squares is
(2 + 1√

2
)D1. The side length of each blue square is equal to the side length

of a yellow block plus D0. All together, the domain sits inside a square of
side length (2 + 1√

2
)D0 + (2 + 1√

2
)2D1.

g([0, S]m) = h([0, S]m) ⊃ h(E) = f(E) = F . A similar argument works in the setting of
Theorem 2.5. □

Remark 2.9. Using packings with rotated squares or cubes, it is possible to improve
Corollary 2.8 in certain situations. For example, let T be a tree of sets in a metric space
X such that Top(T ) is contained in a compact set and Nj = 5 for all j ≥ 0. Because

⌈
√
5⌉ = 3, Corollary 2.8 tells us that Leaves(T ) is contained in a Lipschitz image of a

Euclidean square if

(2.8)
∞∑
j=0

3j+1Dj < ∞.

However, allowing rotations, 5 unit squares in the Euclidean plane can be packed inside
a square of side length 2 + 1√

2
by arranging four axis-parallel squares around a square

that is rotated by 45◦. Thus, mutatis mutandis, the proofs above show that Leaves(T )
sits inside a Lipschitz image of a Euclidean square if

(2.9)
∞∑
j=0

(2 + 1√
2
)j+1Dj < ∞.

See Figure 2.2. The problem of finding the minimal side length s of a square containing
N unit squares (with rotations) is open except for some sporadic values of N . See the
survey [Fri98] for an illuminating introduction.

A clever reader may also notice that Leaves(T ) is contained in a Lipschitz image of a
Euclidean square when Nj = 5 for all j if

∑∞
j=0 5

2j+1D2j < ∞. (Skip odd generations.)

This is a further improvement over (2.9), because 5 < (2 + 1√
2
)2.
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Remark 2.10 (square packings and Hölder maps). It is easy to modify the statements
and proofs above to produce Hölder maps in place of Lipschitz maps. To produce maps
satisfying |f(x)− f(y)| ≤ H|x− y|1/s simply replace the quantity Dj by Ds

j .

3. Densities, Assouad dimension, and rectifiability

As an initial application of Theorem 2.5, we extend Martin and Mattila’s [MM88,
Theorem 4.1(1)] on the rectifiability of Hausdorff measures on s-sets in Rd when s < m
(also see [BV19, Theorem C]) to general measures on complete metric spaces. To build
a tree, [MM88] and [BV19] each used the Besicovitch covering theorem, which is not
available in a general metric space. We are able to avoid reliance on a covering theorem
by utilizing r-nets, i.e. maximal subsets of r-separated points.

Theorem 3.1. Let µ be a finite Borel measure on a complete metric space X. For every
integer m ≥ 1 and real-valued dimension s ∈ [0,m), the measure

(3.1) µ

{
x ∈ X : 0 < lim inf

r↓0

µ(B(x, r))

rs
≤ lim sup

r↓0

µ(B(x, r))

rs
< ∞

}
is m-rectifiable. In fact, the set described in (3.1) is contained in a countable union of
images of Lipschitz maps of the form f : E ⊂ [0, 1]m → X.

Proof. For each n ≥ 2, let Gn := {x ∈ X : rs/n ≤ µ(B(x, r)) ≤ nrs for all 0 < r < 1/n}.
Because the set of points with positive lower s-density and finite upper s-density can be
written as

⋃∞
n=2Gn, it suffices to fix G = Gn for some n ≥ 2 and prove that there exists

a compact set E ⊂ [0, 1]m and a Lipschitz map f : E → X such that f(E) ⊃ G. The
Lipschitz constant of f will depend only on µ(X), m, s, n, and diamG.

The set G is compact. Since X is complete, it suffices to prove that G is closed and
totally bounded. To show that G is closed, suppose that x1, x2, · · · ∈ G and limk→∞ xk = x
for some x ∈ X and let 0 < r < 1/n. Since B(xk, r−|x−xk|) ⊂ B(x, r) ⊂ B(xk, r+|x−xk|)
and 0 < r − |x− xk| ≤ r + |x− xk| < 1/n when k is sufficiently large, we have

1

n
rs = lim

k→∞

1

n
(r − |x− xk|)s ≤ lim inf

k→∞
µ(B(xk, r − |x− xk|)) ≤ µ(B(x, r))

and

µ(B(x, r)) ≤ lim inf
k→∞

µ(B(xk, r + |x− xk|)) ≤ lim
k→∞

n(r + |x− xk|)s = nrs.

Hence x ∈ G and the set G is closed. To show that G is totally bounded, let 0 < r < 2/n
and let Gr be a maximal set of points in G such that |x− y| > r for all distinct x, y ∈ G.
The set Gr is finite, because

1

n
(r/2)s ·#Gr ≤

∑
x∈Gr

µ (B (x, r/2)) ≤ µ(X) < ∞.

As G ⊂
⋃

x∈Gr
B(x, r) and #Gr < ∞ for any 0 < r < 2/n, it follows that G can be

covered by finitely many balls of any prescribed radius. That is, G is totally bounded.
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We build a tree of sets T =
⋃∞

l=0 Tl with Leaves(T ) = G. Let b ≫ 1 be a large number,
to be specified below, with b → ∞ as s → m or n → ∞. At the top level, assign T0 = {G}.
For each l ≥ 1, assign ρl := (1/n)b−l, σl := ρl + ρl+1 + · · · = [b/(b− 1)](1/n)b−l, and

Tl := {G ∩B(x, σl) : x ∈ Gρl}.

We define the parental structure as follows. As #T0 = 1, the parent of any set in T1

is automatically determined. For each l ≥ 2 and x ∈ Gρl , choose any x↑ ∈ Gρl−1
such

that |x − x↑| ≤ ρl−1; then assign G ∩ B(x, σl)
↑ = G ∩ B(x↑, σl−1). Clearly, every set in

Tl is contained in its parent, since ρl−1 + σl = σl−1. Thus, T =
⋃∞

l=0 Tl is a tree of sets
in the sense of Definition 2.1. Observe that

⋃
Tl = G for every l ≥ 0. It follows that

Leaves(T ) =
⋂∞

l=0

⋃
Tl = G.

Rectifiability. For each l ≥ 0, let Nl = maxF∈Tl #Child(F ) and Dl = maxF∈Tl diamF .
Of course, N0 = #T1 = #Gρ1 ≲s,n,b µ(X), D0 = diamG, and Dl ≤ 2σl for all l ≥ 1.
To bound Nl for l ≥ 1, let F = G ∩ B(z, σl) ∈ Tl for some z ∈ Gρl . Using the pairwise
disjointness of {B(x, 1

2
ρl+1) : x ∈ Gρl+1

} and the definition of G, we have

1

n

(
1

2n
b−(l+1)

)s

#Child(F ) ≤
∑

Child(F )

µ(B(x, 1
2
ρl+1)) ≤ µ(B(z, σl)) ≤ n

(
b

(b− 1)n
b−l

)s

.

Hence

Nl ≤ n2

(
2b2

b− 1

)s

=: Pl for all l ≥ 1.

Note that, since n > 1 and b ≥ 2 (at the end of the day, much bigger than 2),

⌈P 1/m
l ⌉ ≤ P

1/m
l + 1 = n2/m

(
2b2

b− 1

)s/m

+ 1 < n2/m(4b)s/m + 1 < n2/m(5b)s/m =: C.

Thus, recalling that s < m, we see that

∞∑
l=1

C lσl ≤
b

n(b− 1)

∞∑
l=1

(
n2/m(5b)s/m

b

)l

< ∞

provided that b is large enough depending only on m, s, and n. Therefore,

S :=
∞∑
l=0

(
l∏

j=0

⌈N1/m
j ⌉

)
Dj < ⌈N1/m

0 ⌉

(
D0 + 2

∞∑
l=1

C lσl

)
< ∞.

By Theorem 2.5, it follows that G = Leaves(T ) ⊂ f(E) for some compact set E ⊂ [0, 1]m

and some S-Lipschitz map f : E → X. Reviewing dependencies, we see that the Lipschitz
constant S ≲m,s,n (1 + µ(X)1/m)(1 + diamG). □

In a metric space X, a nonempty set F ⊂ X is said to be s-homogeneous if there exists
C > 1 such that for every bounded set A ⊂ F and for every δ ∈ (0, 1), there exist Cδ−s or
fewer sets A1, . . . , An ⊂ F with diamAi ≤ δ diamA for all i such that A ⊂ A1 ∪ · · · ∪An.
That is, bounded subsets of F can be covered by a controlled number of uniformly smaller
sets. The Assouad dimension of F (see e.g. [Luu98] or [Fra21]) can be defined as

(3.2) dimA F := inf{s ≥ 0 : F is s-homogeneous}.
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It is easy to see that dimH F ≤ dimA F = dimA F for all F ⊂ X. Also, if dimA X < ∞,
then every bounded set in X is totally bounded and the space X is separable. In particular,
on any metric space X with 0 < dimA X < ∞, we can find a countable dense subset F of
X and this set has dimH F = 0 < dimA X = dimA F .

As a second application of the square packing construction, we extend the Lipschitz
case of Badger and Vellis’ [BV19, Theorem 3.2] from Rd to complete metric spaces.

Theorem 3.2. Let X be a complete metric space. If F ⊂ X is nonempty, m ≥ 1 is an
integer, and dimA F < m, then there exists a closed set E ⊂ Rm and a Lipschitz map
f : E → X such that f(E) ⊃ F . When F is bounded, we may take E ⊂ [0, 1]m.

Proof. The proof for bounded sets is even easier than the proof of Theorem 3.1, as the
definition of Assouad dimension is perfectly suited to building uniform trees. The proof
for unbounded sets will follow from estimates on the Lipschitz constant in the bounded
case and effective use of the Attouch-Wets topology (see e.g. [Bee93] or [BL15]).

Suppose that F ⊂ X is nonempty, bounded, and dimA F < m for some integer m ≥ 1.
Note for later that the closure F of F is compact, since dimA F = dimA F < ∞ and F is
bounded imply that F is totally bounded and X is complete implies that F is complete.
Now, since dimA F < m, there exists s < m and C > 1 such that F is s-homogeneous
with associated constant C > 1. Let b ≫ C be a large number. We aim to build a tree a
sets T =

⋃∞
l=0 Tl with Leaves(T ) = F . Assign T0 := {F}. For the induction step, suppose

that we have defined Tl for some l ≥ 0 so that diamQ ≤ b−l diamF for all Q ∈ Tl. To
define Tl+1, it suffices to define the set of children for each Q ∈ Tl. Given Q ∈ Tl, use
s-homogeneity of F with δ = b−1 to find Cbs or fewer sets A1, . . . , AN ⊂ F such that
Q ⊂ A1 ∪ · · · ∪ AN and diamAi ≤ b−1 diamQ ≤ b−(l+1) diamF for all i; then assign
Child(Q) := {Q ∩ A1, . . . , Q ∩ AN}. This completes the definition of T . For every level
l ≥ 1, we have F ⊃

⋃
Tl ⊃

⋃
Tl−1 ⊃ · · · ⊃

⋃
T0 = F . Thus, Leaves(T ) =

⋂∞
l=0

⋃
Tl = F ,

as desired. From construction, we see that for every l ≥ 0,

Nl := sup
Q∈Tl

#Child(Q) ≤ Cbs and Dl := sup
Q∈Tl

diamQ ≤ b−l diamF.

Choose t ∈ (s,m), for concreteness say t := (s +m)/2. Then, as long as b ≫ C, we can

bound ⌈N1/m
l ⌉ ≤ C1/mbs/m + 1 ≤ (C1/m + 1)bs/m ≤ bt/m. Hence

(3.3) S :=
∞∑
j=0

(
j∏

i=0

⌈N1/m
i ⌉

)
Dj ≤ bt/m diamF

∞∑
j=0

b((t/m)−1)j ≲m,s,C diamF < ∞.

Therefore, by Theorem 2.5, we can find a compact set E ⊂ [0, 1]m and a L-Lipschitz map
f : E → X such that f(E) ⊃ Leaves(T ) = F , where L ≲m,s,C diamF .

Suppose that F ⊂ X is unbounded and dimA F < m. Then we can find s < m such
that F is s-homogeneous with associated constant C > 1. Choose any base point x0 ∈ F .
Then Fn := F ∩ B(x0, n) is also s-homogeneous with associated constant C for each
n ≥ 1. Since diamFn ≤ 2n for each n ≥ 1, after rescaling the domain of the maps from
the bounded case, we can find a constant L = L(m, s, C), compact sets En ⊂ [0, n]m, and
L-Lipschitz maps gn : En → X such that gn(En) ⊃ Fn for each n ≥ 1. Without loss of
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generality, replacing each set En by En ∩ g−1
n (F n), we may assume that

gn(En) = Fn ⊂ F for each n ≥ 1.

At this stage, it is theoretically possible that the domains of gn escape to infinity as
n → ∞. To correct for this, first choose points wn ∈ En such that gn(wn) = x0; then define
sets Ẽn := En−wn ⊂ [−n, 2n]m and functions g̃n : Ẽn → X by setting g̃n(x) := gn(x+wn).
For all n, the function g̃n is L-Lipschitz, the image g̃n(Ẽn) = Fn ⊂ F , and we have 0 ∈ Ẽn

and g̃n(0) = x0. In particular, neither the domains Ẽn nor the graphs of g̃n escape to
infinity as n → ∞. Because Rm and Y = Rm×F are proper metric spaces (i.e. closed balls
are compact), we can use the Attouch-Wets analogue of the Blaschke selection theorem5

and mimic the argument from the proof of Theorem 2.5 above to produce a closed set
Ẽ ⊂ Rm and an L-Lipschitz map f : Ẽ → F such that f(0) = x0. Moreover, because
F ⊃ g̃n(Ẽn) ⊃ Fn ⊃ Fk for all n ≥ k, it easily follows that f(Ẽ) = F ⊃ F . □

In view of Remark 2.10, one can also extend the Hölder case of [BV19, Theorem 3.2]
from Rd to complete metric spaces.

Theorem 3.3. Let X be a complete metric space. If F ⊂ X is nonempty, m ≥ 1 is
an integer, and dimA F < sm for some s > 0, then there exist a closed set E ⊂ Rm, a
continuous map f : E → X, and a constant H such that f(E) ⊃ F and |f(x) − f(y)| ≤
H|x− y|1/s for all x, y ∈ E. When F is bounded, we may take E ⊂ [0, 1]m.

Let dimM X denote the upper Minkowski dimension of a metric space X (see e.g. [Mat95]
or [BP17]), which satisfies dimH X ≤ dimP X ≤ dimMX ≤ dimA X. Balka and Keleti
recently announced the following significant extension of Theorems 3.2 and 3.3.

Theorem 3.4 ([BK24, Theorem 4.3]). Suppose that M and X are compact metric spaces.
If dimM X < s dimH M for some s > 0, then there exist a compact set E ⊂ M and a
(1/s)-Hölder surjection f : E → X.

The proof of Theorem 3.4 relies in part on a deep theorem of Mendel and Naor on the
existence of ultrametric subsets [MN13] and a theorem of Keleti, Máthé, and Zindulka on
the existence of Hölder surjections from ultrametric spaces onto cubes [KMZ14].

Example 3.5 (Hölder parameterizations vs. Hölder fragments). Badger and Vellis [BV21]
proved that there exist connected self-affine Bedford-McMullen carpets F ⊂ R2 such that
any (1/t)-Hölder surjection g : [0, 1] → F necessarily has t > 2. In contrast, since the
upper Minkowski dimension of the carpet F is less than 2, Theorem 3.4 ensures that there
exists a compact set E ⊂ [0, 1] and a (1/s)-Hölder surjection f : E → F with s < 2.

4. Metric cubes, dimension of measures, and other prerequisites

In this section, we collect essential tools from metric geometry and geometric measure
theory that we need for the proof of Theorem 1.1.

5see [BL15, Theorem 2.5] or combine Theorems 3.1.4, 3.1.7, 5.1.10, 5.2.10, and 5.2.12 in [Bee93]
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4.1. Generalized b-adic cubes. We will use the streamlined construction of metric
cubes by Käenmäki, Rajala, and Suomala [KRS12]. The original application (see [KRS12,
Theorem 4.1]) was to construct doubling measures of arbitrarily small upper packing
dimension. Recall that a set B in a metric space X is totally bounded if B can be covered
by finitely many balls of radius r for every r > 0. We let B(x, r) and U(x, r) denote the
closed and open balls in X with center x and radius r, respectively. We emphasize that
the following theorem does not require X to be complete. Note that we have replaced the
parameter r ∈ (0, 1/3] in the original statement of the theorem with b = r−1 ∈ [3,∞).

Theorem 4.1 ([KRS12, Theorem 2.1]). Let X be a metric space in which every ball is
totally bounded and choose an “origin” o ∈ X and scaling factor b ∈ [3,∞). For each
k ∈ Z, there exists a set ∆k of nonempty bounded Borel sets (“cubes”) and a set of points
{xQ : Q ∈ ∆k} (“centers”) with the following properties.

(1) partitioning: X =
⋃

Q∈∆k
Q for all k ∈ Z;

(2) nesting: Q ∩R = ∅ or R ⊂ Q for all Q ∈ ∆k and R ∈ ∆m when m ≥ k;
(3) roundness: U(xQ, cbb

−k) ⊂ Q ⊂ B(xQ, Cbb
−k) for all Q ∈ ∆k, where

cb =
1

2
− 1

b− 1
and Cb =

b

b− 1
;

(4) origin: for every k ∈ Z, there is Q ∈ ∆k such that xQ = o; and,
(5) inheritance: for every k ∈ Z and Q ∈ ∆k, there exists a cube R ∈ ∆k+1 such that

R ⊂ Q and xR = xQ.

Remark 4.2 (associated notions). We call any family (∆k)k∈Z given by Theorem 4.1 a
system of b-adic (KRS) cubes for X with origin o. We call ∆k the k-th level or generation
of ∆ :=

⊔
k∈Z∆k. The same point set Q in X may belong to ∆k for several k. For each

Q ∈ ∆k, we call the number sideQ := b−k the side length of Q, we call UQ := U(xQ, cbb
−k)

the inner ball for Q, and we call BQ := B(xQ, Cbb
−k) the outer ball for Q. We always

have diamQ ≤ diamBQ ≤ 2Cb sideQ. However, in general, there is no lower bound on
diamQ in terms of sideQ, because X could be bounded and/or disconnected.

For each Q ∈ ∆k, let Child(Q) = {R ∈ ∆k+1 : R ⊂ Q} denote the children of Q in ∆;
we call R ∈ Child(Q) a child of Q and we call Q the parent of R. More generally, for any
Q ∈ ∆k and j ≥ 0, let Childj(Q) = {R ∈ ∆k+j : R ⊂ Q} denote the set of j-th generation
descendants of Q. (Note that Child0(Q) = {Q}.)

For every cube Q ∈ ∆, we let Q↑ denote the parent of Q and let Q↓ denote the unique
cube R ∈ Child(Q) such that xR = xQ. We call Q↓ the central child of Q. In order
to write down later estimates, we define the central indicator function ci : ∆ → {0, 1}
so that ci(Q) = 1 if Q is the central child of its parent (i.e. Q = Q↑↓) and ci(Q) = 0
otherwise. Finally, for every cube Q0 ∈ ∆ and chain of descendants Q1 ∈ Child(Q0), . . . ,
Qj ∈ Child(Qj−1) with j ≥ 1, we define the central counting function

(4.1) cc(Q0, Qj) := #{1 ≤ i ≤ j : Qi = Q↓
i−1} = #{1 ≤ i ≤ j : ci(Qi) = 1}.

Remark 4.3 (exhaustion). Inclusion of the origin in a system of b-adic cubes has several
consequences. For each k ∈ Z, let Qo

k denote the unique cube in ∆k whose center is the
origin. For any k0 ∈ Z, we have Qo

k0
⊂ Qo

k0−1 ⊂ Qo
k0−2 ⊂ · · · and

⋃∞
j=0 Q

o
k0−j = X, because
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Qo
k0−j ⊃ U(o, bj−k0). Therefore, it is possible to exhaust X by cubes in ∆. In particular,

every cube Q ∈ ∆ belongs to Qo
k for some k ∈ Z. Consequently, every pair of cubes in ∆

have a common ancestor.

Remark 4.4 (the central child is relatively far away from the boundary). Recall that for
any nonempty sets A and B in X, gap(A,B) = infa∈A infb∈B |a− b|. A key property that
we will use without further comment is monotonicity: gap(A,B) ≥ gap(C,D) whenever
A ⊂ C and B ⊂ D. If the scaling factor b > 5 and Q ∈ ∆k is any cube such that Q ̸= X,
then

gap(Q↓,X \Q) ≥ gap(BQ↓ ,X \ UQ)

≥ radiusUQ − radiusBQ↓ = (bcb − Cb)b
−(k+1) ≳b sideQ

↓.
(4.2)

Indeed, bcb − Cb = b(1
2
− 2

b−1
) > 0 if and only if b > 5.

Example 4.5. A modified version of the usual triadic cubes in Rd enjoys all of the essential
properties of KRS cubes. Let o = (0, . . . , 0) denote the origin. We initially declare that
each cube of the form Qo

k = (−1
2
· 3k, 1

2
· 3k]d with k ∈ Z is an origin-based triadic cube.

Further, we declare that any half-open cube that appears after trisecting an origin-based
triadic cube into 3d equal size subcubes is also an origin-based triadic cube. Let ∆k denote
all origin-based triadic cubes of side length 3−k. The center xQ of Q ∈ ∆ =

⋃
k∈Z∆k is

the geometric center of the cube. The family (∆k)k∈Z of origin-based triadic cubes satisfy
properties (1)–(5) of Theorem 4.1 with scaling factor b = 3 and with constants cb and
Cb replaced by 1/2 and

√
n/2, respectively. Of course, gap(Q↓,Rd \ Q) ≥ sideQ↓ for all

Q. One way in which origin-based triadic cubes are superior to the usual variant is that
each nonempty bounded set in Rd is contained in an origin-based triadic cube. Another
improvement is that any two origin-based triadic cubes have a common ancestor.

Lemma 4.6 (counting cubes I). Let X be an Ahlfors q-regular metric space. If (∆k)k∈Z
is a system of b-adic cubes for X with b ≥ 5, then

(4.3) bjq ≲X #Childj(Q) ≲X bjq for all Q ∈ ∆ with Q ̸= X and j ≥ 1.

Proof. Since X is q-regular, there exists a measure ν and constants C,D > 0 such that
Crq ≤ ν(U(x, r)) ≤ ν(B(x, r)) ≤ CDrq for all x ∈ X and for all 0 < r < diamX. Let
Q ∈ ∆k with Q ̸= X. Then we may use the lower bound on ν(UQ) and on ν(UR) for any
descendant R of Q. The upper bounds on ν(BQ) and ν(BR) are always valid. Let j ≥ 1.
Using UQ ⊂ Q ⊂

⋃
R∈Childj(Q) BR and

⋃
R∈Childj(Q) UR ⊂ Q ⊂ BQ, as well as the pairwise

disjointness of {UR : R ∈ Childj(Q)}, we have

Ccqbb
−kq ≤ #Childj(Q)CDCq

b b
−(k+j)q and #Childj(Q)Ccqbb

−(k+j)q ≤ CDCq
b b

−kq.

Rearranging yields [D(Cb/cb)
q]−1bjq ≤ #Childj(Q) ≤ D(Cb/cb)

qbjq. Noting that Cb/cb =
2b/(b− 3) yields

(4.4)
[
( 2b
b−3

)qD
]−1

bjq ≤ #Childj(Q) ≤
[
( 2b
b−3

)qD
]
bjq.

When b ≥ 5, we have Cb/cb ≤ C5/c5 = 5. Thus, letting ν range over all possible Ahlfors
q-regular measures on X, it follows that we may replace D(Cb/cb)

q in (4.4) with a constant
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depending on X (including q), but not on a choice of ν nor on the choice of a particular
system of cubes. □

To construct doubling measures using b-adic cubes (see §5), it will be convenient to
have the following variant of Lemma 4.6.

Lemma 4.7 (counting cubes II). Let X be an Ahlfors q-regular metric space and let
(∆k)k∈Z be a system of b-adic cubes for X with b ≥ 47. For all Q ∈ ∆k, define

Inner(Q) := {R ∈ Child(Q) : R ∩ U(xQ,
1
2
cbb

−k) ̸= ∅},(4.5)

Outer(Q) := Child(Q) \ Inner(Q) = {R ∈ Child(Q) : R ∩ U(xQ,
1
2
cbb

−k) = ∅}.(4.6)

For all Q ∈ ∆ with Q ̸= X, we have

(4.7) bq ≲X #Inner(Q) ≲X bq and #Outer(Q) ≲X bq.

If Q ∈ ∆, Q ̸= X, R ∈ Child(Q), and gap(R,X \Q) ≤ 9 sideR, then R ∈ Outer(Q).

Proof. Let Q ∈ ∆k with Q ̸= X. We start with the final claim. For all R ∈ Child(Q),

diamR ≤ 2b

b− 1
sideR < 2.1 sideR and radiusUQ =

b− 3

2b− 2
b sideR > 22.4 sideR,

since b ≥ 47. Also, gap(1
2
UQ,X \Q) ≥ gap(1

2
UQ,X \ UQ) ≥ 1

2
radiusUQ. Hence

gap(1
2
UQ, R) ≥ gap(1

2
UQ,X \Q)− diamR− gap(R,X \Q)

> 11.2 sideR− 2.1 sideR− gap(R,X \Q) > 0

and R ∈ Outer(Q) if gap(R,X \Q) ≤ 9 sideR.
Let ν, C, and D be as in the proof of Lemma 4.6. By definition of Inner(Q), we have

1
2
UQ ⊂

⋃
R∈Inner(Q) BR. Hence using the Ahlfors regularity inequalities for ν,

C(1
2
cb)

qb−kq ≤ #Inner(Q)CDCq
b b

−(k+1)q.

Since 2Cb/cb = 4b/(b− 3) < 4.3 when b ≥ 47,

(4.8) #Inner(Q) ≥ (4.3D)−1bq.

Letting ν range over all Ahlfors q-regular measures on X yields the lower bound on
#Inner(Q) in (4.7). Lemma 4.6 gives the upper bounds. □

Remark 4.8. The constants 47 and 9 in the expressions b ≥ 47 and gap(R,X\Q) ≤ 9 sideR
are a convenient choice for the proof of Lemma 5.5. In general, there is no analogue of the
lower bound on #Inner(Q) in (4.7) for #Outer(Q) and it is possible that Outer(Q) = ∅.
Corollary 4.9. Let X be an Ahlfors q-regular metric space with diamX ≥ 2.1 and let
(∆k)k∈Z be a system of b-adic cubes for X with b ≥ 47. If 0 < s < q and b is sufficiently
large depending only on X (including q) and s, then

(4.9) #Inner(Q) ≥ bs and #Child(Q) ≤ bq+1

for all Q ∈ ∆+ =
⋃∞

k=0∆k.

Proof. For any Q ∈ ∆+, we have diamQ ≤ 2Cb/cb < 2.1 ≤ diamX and Q ̸= X, since
b ≥ 47. By Lemma 4.6 and 4.7, we can find CX > 1 such that #Inner(Q) ≥ C−1

X bq and
#Child(Q) ≤ CXb

q. Then, if b is sufficiently large, we have C−1
X ≥ bs−q and CX ≤ b. □
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4.2. Dimension of measures. Let X be a metric space. To set conventions, we define
the s-dimensional Hausdorff measure Hs(E) and s-dimensional packing measure Ps(E)
for all s ∈ [0,∞) and for all nonempty E ⊂ X by

(4.10) Hs(E) := lim
δ↓0

inf {
∑∞

i=1(diamEi)
s : E ⊂

⋃∞
i=1Ei, ∀i≥1 diamEi ≤ δ}

and

Ps(E) := inf {
∑∞

i=1 P
s(Ei) : E ⊂

⋃∞
i=1Ei} , where

P s(E) := lim
δ↓0

sup {
∑∞

i=1(2ri)
s : ∀i≥1xi ∈ E, ri ∈ (0, δ/2],

∀i ̸=jB(xi, ri) ∩B(xj, rj) = ∅ } .

(4.11)

Then dimH E := inf{s ≥ 0 : Hs(E) = 0} and dimP E := inf{s ≥ 0 : Ps(E) = 0},
using the convention that inf ∅ = ∞. Because a general metric space is not necessarily
uniformly perfect6, it is important to adopt the “radial” definition of the packing measure
(see [Cut95]) and we have done so.

The lower and upper Hausdorff dimensions of a Borel measure µ on a separable metric
space X are given respectively by

dimH µ := inf{dimH E : µ(E) > 0, E Borel},(4.12)

dimH µ := inf{dimH E : µ(X \ E) = 0, E Borel}.(4.13)

The support of µ, denoted by sptµ, is the smallest closed set F such that µ(X \ F ) = 0.
Naturally, dimH µ ≤ dimH µ ≤ dimH sptµ for all µ, but both inequalities can be strict.
That is to say, the dimension of a measure is a distinct notion from the dimension of
its support. The lower and upper packing dimensions of µ are defined analogously by
substituting the packing dimension of E for the Hausdorff dimension of E. In general,

(4.14) dimH µ ≤ dimP µ; dimH µ ≤ dimP µ; and dimP µ ≤ dimP µ.

In the rare situation that dimH µ = dimH µ = dimP µ = dimP µ = s, we may say that µ
has exact dimension s. The following well-known formulas for dimensions of measures in
Euclidean space Rd (see e.g. [Fal97]) continue to persist in the metric setting:

Theorem 4.10 (Tamashiro [Tam95, Theorem 1.8]). Let X be a separable metric space.
If µ is a finite Borel measure on X, then

dimH µ = µ−ess inf
x∈X

(
lim inf

r↓0

log µ(B(x, r))

log r

)
,(4.15)

dimH µ = µ−ess sup
x∈X

(
lim inf

r↓0

log µ(B(x, r))

log r

)
,(4.16)

dimP µ = µ−ess inf
x∈X

(
lim sup

r↓0

log µ(B(x, r))

log r

)
,(4.17)

dimP µ = µ−ess sup
x∈X

(
lim sup

r↓0

log µ(B(x, r))

log r

)
.(4.18)

6A metric space X is c-uniformly perfect if diamB(x, r) ≥ cr for all x ∈ X and r > 0 with B(x, r) ̸= X.

For example, connected metric spaces are 1-uniformly perfect.
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The quantities lim infr↓0 log µ(B(x, r))/ log(r) and lim supr↓0 log µ(B(x, r)/ log(r) are
called the lower and upper local dimensions of µ at x, respectively. On doubling metric
spaces, one may replace balls B(x, r) in (4.15)–(4.18) with b-adic cubes.

Lemma 4.11 (see [KRS13, Proposition 3.1]). Let X be a doubling metric space and let
(∆k)k∈Z be a system of b-adic cubes for X. Let Qk(x) denote the cube in ∆k containing
x ∈ X. If µ is a Borel measure on X that is finite on bounded sets, then at µ-a.e. x ∈ X,

lim inf
r↓0

log µ(B(x, r))

log r
= lim inf

k→∞

log µ(Qk(x))

log b−k
,(4.19)

lim sup
r↓0

log µ(B(x, r))

log r
= lim sup

k→∞

log µ(Qk(x))

log b−k
.(4.20)

4.3. Measures with prescribed values. In the remainder of the paper, we will study
the properties of certain measures on metric spaces X whose balls are totally bounded,
formally built by

(1) choosing a system of b-adic cubes (∆k)k∈Z on X;
(2) specifying a function w : {Q : Q ∈ ∆+} → [0,∞) on the closure of cubes in

∆+ =
⋃∞

k=0∆k such that w(Q) =
∑

R∈Child(Q) w(R) for all Q ∈ ∆+ and extending

the definition by assigning w(∅) = 0; and,
(3) defining µw(E) := inf{

∑∞
i=1w(Qi) : E ⊂

⋃∞
i=1 Qi for some Q1, Q2, · · · ∈ ∆+∪{∅}}

for all E ⊂ X.
Because the weight w is additive over children, we may alternatively write

µw(E) = lim
δ→0

inf

{
∞∑
i=1

w(Qi) : E ⊂
∞⋃
i=1

Qi for some Q1, Q2, · · · ∈ ∆+ ∪ {∅}, diamQi ≤ δ

}
It easily follows that µw is a metric outer measure and Borel sets are µw measurable.
Further, because any ball can be covered by a finite number of cubes of side length 1
and the outer measure is defined using outer approximation by closed sets, it follows that
µw is a Radon measure on X, i.e. a locally finite Borel regular outer measure on X. For
details, see e.g. [Rog98]. However, it is an unpleasant reality that the measures µw(Q)
and µw(Q) and the weight w(Q) do not need to agree on cubes Q ∈ ∆+. There are two
issues.

Example 4.12. Let X = R and let (∆k)k∈Z be the system of left-open triadic intervals.
Define a weight w so that w([0, 3−k]) = 1 for all k ≥ 0, and w(I) = 0 for all other triadic
intervals of length at most 1. Then µw([0, 1]) = 0 even though w([0, 1]) = 1. To see this,
simply note that

[0, 1] ⊂ [−1, 0] ∪
∞⋃
k=1

[3−k, 2 · 3−k] ∪ [2 · 3−k, 3 · 3−k]

and the weight of each closed triadic interval on the right hand side is zero. The difficulty
in this example is that w is not countably subadditive.

Example 4.13. Let X = Q be equipped with the subspace metric from R, which is a
doubling metric space. Let (∆k)k∈Z be the system of left-open triadic intervals (in Q).
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Define a weight w so that w(Q ∩ [n, n+ 1]) = 1 for all n ∈ Z and on any triadic interval
I = L ∪M ∪ R of side length at most 1, w(L) = w(M) = w(R) = (1/3)w(I), where L,
M , and R are the left, middle, and right triadic children of I, respectively. In contrast
to the previous example, the weight w has the nice property that w is centrally doubling
insofar as w(I↓) = w(M) ≳ w(I) for all I ∈ ∆+. Nevertheless, µw is the zero measure.
Indeed, µw is nothing other than the restriction of Lebesgue outer measure on R to the
power set of Q. Since Q is countable, µw(Q) = 0. The difficulty in this example is that
Q is not complete.

The following criterion is sufficient to ensure that µw takes prescribed values. It gives
one possible solution to the technical issue described in [KRS12, Remark 5.1(1)].

Lemma 4.14 (extension criterion). Assume that X is a proper metric space (i.e. every
closed ball in X is compact) and b > 5. If there exists a constant 0 < p ≤ 1 such that

w(Q↓) ≥ pw(Q) and w(Q) =
∑

R∈Child(Q) w(R) for all Q ∈ ∆+, then µw(∂Q) = 0 and

µw(intQ) = µw(Q) = µw(Q) = w(Q) for all Q ∈ ∆+.

Proof. Let Q ∈ ∆+. If it happens that Q = X, then µw(∂Q) = µw(∅) = 0. Suppose that
Q ̸= X. Since b > 5, there exists a constant δ = δ(b) > 0 such that gap(P ↓,X \ P ) ≥
δ sideP ↓ > 0 for all P ∈ ∆ such that P ̸= X by Remark 4.4. Hence ∂Q is covered by

{R : R ∈ Childj(Q) and cc(Q,R) = 0},

where cc(Q,R) is given by (4.1). Thus, by the hypothesis, µw(∂Q) ≤ (1− p)jw(Q) for all
j ≥ 1. It follows that µw(∂Q) = 0 and µw(intQ) = µw(Q) = µw(Q) ≤ w(Q). To finish,
it suffices to show that w is countably subadditive, i.e. w(Q) ≤

∑∞
n=1w(Qn) whenever

Q ⊂
⋃∞

n=1Qn for some sequence Qn ∈ ∆+ ∪ {∅}, because this implies w(Q) ≤ µw(Q).

Suppose that Q ⊂
⋃∞

n=1 Qn for some sequence Qn ∈ ∆+ ∪ {∅}. Fix ϵ > 0. By the
same reasoning as in the previous paragraph, for each n ≥ 1, we can choose j = j(Qn)
sufficiently large so that

Aux(Qn) := {R ∈ Childj(P ) :P ∈ ∆+, sideP = sideQn,

gap(P,Qn) < sideQn, cc(P,R) = 0}

satisfies
∑

R∈Aux(Qn)
w(R) ≤ 2−nϵ. (The set of all P ∈ ∆+ such that sideP = sideQn and

gap(P,Q) ≤ sideQn is finite, because the set {UP} of associated inner balls are pairwise
disjoint, have the same radius cb sideQn, are contained in B(xQn , (2Cb + 1) sideQn), and
balls in X are totally bounded.) For each n ≥ 1, define the open set

Un :=
⋃

x∈Qn

U
(
x, 1

2
δb−j(Qn) sideQn

)
.

If y ∈ Un\{Qn} and Py ∈ ∆+\{Qn} is the cube containing y with sidePy = sideQn, then

gap(Py, Qn) ≤ dist(y,Qn) <
1
2
δb−j sideQn < sideQn; moreover, if Ry ∈ Childj(Qn)(Py) is

the descendent containing y, then Ry ∈ Aux(Qn). For the latter claim, simply note that

any R ∈ Childj(Qn)(Py) with cc(Py, R) ≥ 1 has

gap(R,Qn) ≥ gap(R,X \ Py) ≥ δ sideR = δb−j(Qn) sideQn > 2 dist(y,Qn),
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whence y ̸∈ R. Everything considered, Un is an open set and Qn ⊂ Un ⊂ Qn∪
⋃
Aux(Qn).

It follows that {Un : n ≥ 1} is an open cover of Q, since {Qn : n ≥ 1} covers Q, and Q is
compact, since X is proper. Hence, after relabeling, we can assume that U1, . . . , Uk cover
Q for some k. In particular,

F := {Q1, . . . , Qk} ∪
k⋃

j=1

{R : R ∈ Aux(Qj)}

is a finite cover of Q, with the total weight of auxiliary cubes
∑k

j=1

∑
R∈Aux(Qj)

w(R) ≤ ϵ.

The subfamily {S ∈ F : S ∩ Q ̸= ∅} also covers Q. Let F ′ be any minimal subcover of
{S ∈ F : S ∩Q ̸= ∅}. Because F ′ is finite, we can use finite additivity of w to obtain

w(Q) =
∑
S∈F ′

w(S) ≤
∑
S∈F

w(S) ≤ ϵ+
∞∑
j=1

w(Qn).

Sending ϵ → 0 confirms that w is countably subadditive. □

Remark 4.15 (how to use this practically). On a proper metric space X, we choose b > 5
and fix a system (∆k)k∈Z of b-adic cubes. To define a Radon measure µ on X with
prescribed values on ∆+, we may casually

(1) assign some arbitrary finite value µ(Q) for each Q ∈ ∆0 and
(2) describe how to distribute the mass µ(Q) for each Q ∈ ∆+ among its children in

any way such that µ(Q) =
∑

R∈Child(Q) µ(R) and µ(Q↓) ≥ p µ(Q) with 0 < p ≤ 1
independent of Q.

Then the measure µ exists and is unique. Indeed, to show existence, define a weight w
such that w(Q) := µ(Q) for all Q ∈ ∆+. Then µw is a Radon measure with µw(Q) = µ(Q)
and µw(∂Q) = 0 for all Q ∈ ∆+ by Lemma 4.14. We then relabel µw as µ and forget
about the weight w. For uniqueness, simply note that the values of µ on ∆+ determine
the values of µ on open sets, and thus, determine the values of µ on arbitrary sets, because
µ is Radon.

5. Estimates for quasi-Bernoulli measures

We begin by describing the measures in Theorem 1.1 in a special case. The definition
of the measures will rely in part on the following calculation, a simple exercise in calculus.
For an introduction to the concept of entropy, we refer the reader to [CT06].

Lemma 5.1. For every scaling factor b > 1 and integer N ≥ 1, the entropy function
hb,N : (0, 1/N ] → (0,∞) given by

(5.1) hb,N(δ) := (N − 1)δ logb

(
1

δ

)
+ (1− (N − 1)δ) logb

(
1

1− (N − 1)δ

)
is differentiable, monotone increasing, hb,N(0+) = 0, and hb,N(1/N) = logb(N).

Example 5.2 (Euclidean space). Let 1 ≤ m ≤ d − 1 be integers and let s ∈ (m − 1,m).
We define a self-similar Bernoulli-type measure µ on X = Rd by specifying its values on
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(origin-based or standard) triadic cubes in Rd as follows. Let δ > 0 be a small number,
whose exact value depending on d and s will be given momentarily.

(1) Declare µ(Q) = 1 for any triadic cube of side length 1.
(2) For any triadic cube Q of side length at most 1, declare µ(R) = δµ(Q) for all

non-central children R of Q and declare µ(Q↓) = (1− (3d − 1)δ)µ(Q).

That is to say, below scale 1, µ is defined by concentrating most of the mass in the center
of a cube. The measure µ is a doubling measure (see [BLZ23, §8.2] or [KRS12, §3] for
sample details) and the Hausdorff and packing dimension of µ is exact (see e.g. [Heu07]
or [BP17, §1.5]) and is given by the entropy formula

(5.2) h3,3d(δ) = (3d − 1)δ log3

(
1

δ

)
+ (1− (3d − 1)δ) log3

(
1

1− (3d − 1)δ

)
.

To force µ to have dimension s, we simply choose δ = δ(d, s) so that h3,3d(δ) = s. Because
s > m − 1, we immediately see that µ is purely (m − 1)-unrectifiable. Since 0 < s < d,
it can be shown using the law of the iterated logarithm (see e.g. [BH10, Theorem 3.1] or
[LW04, Theorem 1.1]) that at µ-a.e. x ∈ Rd,
(5.3)

lim inf
r↓0

µ(B(x, r))

rs
= lim inf

k→∞

µ(Qk(x))

3−ks
= 0, lim sup

r↓0

µ(B(x, r))

rs
= lim sup

k→∞

µ(Qk(x))

3−ks
= ∞,

where Qk(x) denotes the triadic cube of side length 3−k containing x. This means that
it is impossible to use Theorem 3.1 (or the earlier results of [MM88] or [BV19]) to verify
that µ is m-rectifiable. Nevertheless, using some estimates developed later in this section
(inspired by [GKS10]) together with either Theorem 2.5 or Corollary 2.8, it can be shown
that µ is m-rectifiable (see §6.1).

Up to technical details, the measures in Theorem 1.1 on an Ahlfors regular metric
space are defined analogously to the measures in Example 5.2. All difficulties stem from
imprecise and locally varying counts of metric cubes. Instead of using two weights per
cube to define the mass of children, we will need three. See Figure 5.1.

Lemma 5.3. If b > 1 and L and M are integers such that 0 ≤ L ≤ by and M ≥ bs for
some s, y > 0, then there exists a number α0 = α0(b, y, s) such that for all 0 ≤ α ≤ α0,
there exist unique numbers β = β(α, b, y, s, L,M) and γ = γ(α, b, y, s, L,M) such that

(5.4) Lα + (M − 1)β + γ = 1

and the entropy function

(5.5) hb,L,M(α, β) := Lα logb(1/α) + (M − 1)β logb(1/β) + γ logb(1/γ) = s.

We may always bound Lα logb(1/α) ≤ min(1, s)/e, Lα ≤ min(1, s2)/e2,

(5.6) γ ≥ 1− Lα− s− Lα logb(1/α)

logb(M − 1)
≥ 1− min(1, s2)

e2
−
(
1− 1

e

)
s

logb(M − 1)
,

(5.7) and γ ≥ 1− Lα

M
≥ 1

M

(
1− min(1, s2)

e2

)
≥ 1

M

(
1− 1

e2

)
.
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Moreover, if 2e2 logb(e
2) ≤ (1

2
− 1

e
)s, then

(5.8) β ≥ s

2(M − 1) logb(M − 1)
.

Proof. Assign z := max(1, y) and t := min(1, s). The function x 7→ x logb(1/x) is strictly
increasing on (0, 1/e] and takes its maximum value 1/(e ln(b)) at x = 1/e. Since

bz ≥ z ln(b) ≥ ln(b) ≥ (t/e)e ln(b),

there is a unique number a ∈ (0, 1/e] such that bza logb(1/a) = t/e. Using the comparison
ln(x) ≤ (2/e)x1/2 for x > 0, we see that

a =
t ln(b)

ebz ln(1/a)
≥ a1/2

t ln(b)

2bz
whence a ≥

(
t ln(b)

2bz

)2

.

With partial foresight, we choose

(5.9) α0 := min

((t ln(b)
2bz

)2
,
1

bs

)
,

[
note that α0 =

(t ln(b)
2bz

)2
when s ≤ y,

]
which depends only on b, y, and s. Let 0 ≤ α ≤ α0 be given. Using α ≤ α0 ≤ min(a, b−s)
and the upper bound on L, we see that

(5.10)
Lαs ≤ Lα logb(1/α) ≤ bza logb(1/a) = min(1, s)/e,

and Lα ≤ t2 ln(b)2/4b ≤ min(1, s2)/e2.

To continue, we abbreviate w := 1− Lα ∈ (0, 1] and consider the function

h(x) := (M − 1)x logb

(
1

x

)
+ (w − (M − 1)x) logb

(
1

w − (M − 1)x

)
on (0, w/M ].

Observe that h is differentiable and strictly increasing on (0, w/M ], h(0+) = 0, and

h(w/M) = w logb(M/w) ≥ w logb(M) ≥ (1− Lα)s ≥ s− Lα logb(1/α) ≥ s(1− 1/e)

by the lower bound onM and (5.10). Thus, there exists some unique β = β(α, b, y, s, L,M)
such that h(β) = s− Lα logb(1/α). Setting γ := w − (M − 1)β, we arrive at the desired
conditions (5.4) and (5.5).

To find lower bounds for β and γ, set ϵ = (M − 1)β and write

s− Lα logb(1/α) = ϵ logb(M − 1) + ϵ logb

(
1

ϵ

)
+ (w − ϵ) logb

(
1

w − ϵ

)
︸ ︷︷ ︸

I(ϵ)

≤ ϵ logb(M − 1) + w logb(2/w) ≤ ϵ logb(M − 1) + 2e2 logb(e
2).

(5.11)

To verify the first inequality above, simply check that the function I(ϵ) has a unique
critical point at ϵ = w/2(M − 1). To verify the second, check that w logb(2/w) has a
unique critical point at w = 2e−2. Since I(ϵ) ≥ 0, the first line in (5.11) and (5.10) yield:

γ = 1− Lα− ϵ ≥ 1− Lα− s− Lα logb(1/α)

logb(M − 1)
≥ 1− min(1, s2)

e2
−
(
1− 1

e

)
s

logb(M − 1)
.
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Figure 5.1. On each metric cube Q ∈ ∆k with k ≥ 0, we try to force the
quasi-Bernoulli measure µs to look locally sk+1-dimensional by distributing
the mass of the cube to its children so that the central child receives the
most mass of any child. The number of children of a cube can fluctuate
throughout the space. To get a doubling measure, we choose the weight α
of children in Outer(Q) independently of Q. The weight βQ of children in
Inner(Q) \ {Q↓} and weight γQ of the central child Q↓ depend on α, q, sk+1,
LQ = #Outer(Q), and MQ = #Inner(Q). In the graphic, we illustrate mass
distributions for two cubes P,Q ∈ ∆k with µs(P ) = µs(Q) = 1. On the left
LP = 9 and MP = 7, while on the right LQ = 13 and MQ = 8.

This confirms (5.6). To check (5.7), note that γ = w−(M−1)β ≥ w/M (since β ≤ w/M)
and recall that w = 1 − Lα ≥ 1 − t2/e2. Finally, if 2e2 logb(e

2) ≤ (1
2
− 1

e
)s, then (5.11)

and (5.10) yield (5.8):

β =
ϵ

M − 1
≥ s− Lα logb(1/α)− 2e2 logb(e

2)

(M − 1) logb(M − 1)
≥ s

2(M − 1) logb(M − 1)
. □

Definition 5.4 (quasi-Bernoulli measures). Let X be a complete Ahlfors q-regular metric
space with diamX ≥ 2.1, let ν be a doubling measure on X, and let s = (sk)

∞
k=1 be a

sequence of positive numbers (“target dimensions”) such that

(5.12) s∗ := inf
k≥1

sk > 0 and s∗ := sup
k≥1

sk < q.

Let (∆k)k∈Z be a system of b-adic cubes for X for some large b ≥ 47. For all Q ∈ ∆,
assign LQ := #Outer(Q), MQ := #Inner(Q), and NQ := #Child(Q). We require that b be
large enough depending on at most X and s∗ so that

(5.13) MQ ≥ bs
∗

and LQ ≤ NQ ≤ bq+1 for all Q ∈ ∆+ =
∞⋃
k=0

∆k.
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(See Corollary 4.9.) Let 0 < α ≤
(
1
2
min{s∗, 1} ln(b)b−(q+1)

)2
be a given weight; cf. (5.9).

For all k ≥ 0 and Q ∈ ∆k, we may use Lemma 5.3 to define unique weights

βQ = β(α, b, q + 1, sk+1, LQ,MQ) and γQ = γ(α, b, q + 1, sk+1, LQ,MQ)

satisfying

(5.14) 1 = LQα + (MQ − 1)βQ + γQ and hb,LQ,MQ
(α, βQ) = sk+1.

We specify a Radon measure µs on X by specifying its values on cubes as follows:

(1) Declare µs(Q) := ν(Q) for all Q ∈ ∆0.
(2) For all k ≥ 0 and Q ∈ ∆k, declare µs(R) := αµs(Q) for all R ∈ Outer(Q), declare

µs(R) := βQµs(Q) for all R ∈ Inner(Q) \ {Q↓}, and declare µs(Q
↓) := γQµs(Q).

We call µs a quasi-Bernoulli measure on X with target dimensions s, background measure
ν, and outer weight α. (Of course, µs also depends on the choice of b and (∆k)k∈Z.)

Lemma 5.5 (existence and doubling). For any sequence s = (sk)k≥1 of target dimensions,
background measure ν, and outer weight α, the quasi-Bernoulli measure µs exists and

(5.15) 0 < µs(B(x, r)) < ∞ for all x ∈ X and r > 0.

If b is large enough so that 2e2 logb(e
2) ≤ s∗(

1
2
− 1

e
), then µs is doubling and

(5.16) µs(B(x, 2r)) ≲ν,α,b,s∗,q µs(B(x, r)) for all x ∈ X and r > 0,

where the dependence on ν is on the doubling constant of ν.

Proof. Existence and uniqueness. On the one hand, if Q ∈ ∆+ and logb(MQ − 1) ≥ 2s∗,
then µs(Q

↓) = γQµs(Q) ≥ (1
2
− 1

e2
+ 1

2e
)µs(Q) by (5.6). On the other hand, if logb(MQ−1) ≤

2s∗, then MQ ≤ 1+ b2s
∗
and µs(Q

↓) = γQµs(Q) ≳b,s∗ µs(Q) by (5.7). Therefore, by (5.14)
and Remark 4.15, the measure µs exists and is the unique Radon measure taking the
indicated values on ∆+. Because 0 < µs(Q) < ∞ for all Q ∈ ∆, every ball in X contains
some cube in ∆, and every ball is contained in some cube in ∆ (see Remark 4.3), the
measure µs has full support (5.15).

Doubling on large radii. On balls with large radii, µs inherits the doubling property
from ν. Let x ∈ X and suppose that 2Cbb

−k ≤ r < 2Cbb
−(k−1) for some integer k ≤ 0. On

the one hand, if we let Q ∈ ∆k be the unique cube of side length b−k containing x, then

µs(B(x, r)) ≥ µs(Q) = ν(Q) ≥ ν(UQ) ≥ ν(B(xQ,
1
2
cbb

−k)).

On the other hand, let R = {R ∈ ∆0 : R ∩B(x, 2r) ̸= ∅}. For any R ∈ R and y ∈ R,

|y − xQ| ≤ |y − x|+ |x− xQ| ≤ (diamR + 2r) + r ≤ 7Cbb
−(k−1) = (14bCb/cb)

1
2
cbb

−k.

Hence

µs(B(x, 2r)) ≤
∑
R∈R

µs(R) =
∑
R∈R

ν(R) ≤ ν(B(xQ, (14bCb/cb)
1
2
cbb

−k)).

It follows that

µs(B(x, 2r)) ≤ ν(B(xQ, (14bCb/cb)
1
2
cbb

−k)) ≲ν,b ν(B(xQ,
1
2
cbb

−k)) ≤ µs(B(x, r)),

where the implicit constant depends only on the doubling constant for ν and b.
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b-adic doubling. Assume that 2e2 logb(e
2) ≤ s∗(

1
2
− 1

e
). Then µs is b-adic doubling in

the sense that

(5.17) µs(R) ≳ν,α,b,s∗,q µs(Q) for all Q ∈ ∆ and R ∈ Child(Q).

There are two regimes. First, if sideQ = b−k for some k ≤ −1, then

µs(R) = ν(R) ≳ν,b ν(Q) = µs(Q)

by an argument similar to the one in the previous paragraph, since ν is doubling. Second,
if sideQ = b−k for some k ≥ 0, then either µs(R) = αµs(Q) or µs(R) = βQµs(Q) or
µs(R) = γQµs(Q), so it suffices to find a common lower bound for all of the weights.
In the existence paragraph, we already showed that γQ ≳b,s∗ 1. Since 2e2 logb(e

2) ≤
s∗(

1
2
− 1

e
) ≤ sk+1(

1
2
− 1

e
), we also have βQ ≳b,s∗,q 1 by (5.8) and (5.13). Finally, the weight

α > 0 by definition. Therefore, µs is b-adic doubling.
Doubling on small radii. The key point is that the weights α attached to children R

of Q ∈ ∆k (k ≥ 0) that lie near ∂Q do not depend on Q. This idea is already present in
[KRS12, §3] and [BLZ23, §8]. We continue to assume that 2e2 logb(e

2) ≤ s∗(
1
2
− 1

e
).

Let x ∈ X and suppose that 2Cbb
−k ≤ r < 2Cbb

−(k−1) for some integer k ≥ 1. Let Q be
the unique cube of side length b−k containing x and let S = {R ∈ ∆k−1 : R∩B(x, 2r) ̸= ∅}.
It is easy to see using the doubling property of ν that #S ≲ν,b 1 (cf. proof of Lemma 4.6).
Thus, if we can show that µs(R) ≲ν,α,b,s∗,q µs(S) for all R, S ∈ S, then

µs(B(x, 2r)) ≤
∑
R∈S

µs(R) ≲ν,b,s∗,q µs(Q
↑) ≲ν,α,b,s∗,q µs(Q) ≤ µs(B(x, r)).

Fix R, S ∈ S with R ̸= S. Since R and S both intersect B(x, 2r), we have gap(R, S) ≤
diamB(x, 2r) ≤ 8Cb b

−(k−1) < 9 sideR, since b ≥ 47 implies Cb ≤ 47/46. To proceed, let
us assign labels to the ancestors of R and S: for all 0 ≤ j ≤ k − 1, let QR

j and QS
j be

unique cubes in ∆j containing R and S, respectively. Note that QR
k−1 = R and QS

k−1 = S.
Let i ≥ 0 be the least index such that QR

i ̸= QS
i . If i = 0, then µs(Q

R
0 ) = ν(QR

0 ),
µs(Q

S
0 ) = ν(QS

0 ), and gap(QR
0 , Q

S
0 ) ≤ gap(R, S) < 9, so

(5.18) µs(Q
R
0 ) ≲ν µs(Q

S
0 ) ≲ν µs(Q

R
0 )

by the doubling of ν. If i ≥ 1, then (QR
i )

↑ = QR
i−1 = QS

i−1 = (QS
i )

↑. Hence

(5.19) µs(Q
R
i ) ≤ µs(Q

R
i−1) = µs(Q

S
i−1) ≲ν,α,b,s∗,q µs(Q

S
i )

by (5.17). The same argument shows µs(Q
S
i ) ≲ν,α,b,s∗,q µs(Q

R
i ). For all i+1 ≤ j ≤ k−1, we

have gap(QR
j ,X\QR

j−1) ≤ gap(R, S) < 9 sideR ≤ 9 sideQR
j , whence Q

R
j ∈ Outer(QR

j−1) by

Lemma 4.7. The same is true if we swap the role of R and S. Thus, µs(Q
R
j ) = αµs(Q

R
j−1)

and µs(Q
S
j ) = αµs(Q

S
j−1) for all i+ 1 ≤ j ≤ k − 1. It follows that

(5.20) µs(R) = αk−1−iµs(Q
R
i ) ≲ν,α,b,s∗,q α

k−1−iµs(Q
S
i ) = µs(S).

Similarly, µs(S) ≲ν,b,s∗,q µs(R). Therefore, µs is a doubling measure. □
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Lemma 5.6 (dimension). If µs is b-adic doubling (e.g. if 2e2 logb(e
2) ≤ s∗(

1
2
− 1

e
)), then

(5.21) dimH µs = dimH µs = lim inf
k→∞

1

k

k∑
j=1

sj, dimP µs = dimP µs = lim sup
k→∞

1

k

k∑
j=1

sj.

Proof. To prove (5.21), we may fix Q0 ∈ ∆0 and show that (see §4.2)

lim inf
k→∞

log µs(Qk(x))

log(b−k)
= lim inf

k→∞

1

k

k∑
j=1

sj, lim sup
k→∞

log µs(Qk(x))

log(b−k)
= lim sup

k→∞

1

k

k∑
j=1

sj

at µs-a.e. x ∈ Q0, where Qk(x) ∈ ∆k is the cube containing x. For convenience, so that we
may adopt the probabilistic viewpoint, we temporarily rescale µs so that µs(Q0) = 1. Let
E denote the expectation with respect to the probability measure P := µs Q0. Following
the same plan as in [Heu07, §3], for each k ≥ 1 we define a random variable Xk on Q0 by

Xk(x) = − logb µs(Qk(x)) + logb µs(Qk−1(x)).

Note that |Xk(x)| ≲µs 1 for all x ∈ Q0, since µs is b-adic doubling. The relevance of these
random variables for the problem at hand is that

(5.22)
Sk(x)

k
:=

X1(x) + · · ·+Xk(x)

k
=

log µs(Qk(x))

log(b−k)
for all x ∈ Q0,

since logb(µs(Q0(x)) = logb(µs(Q0)) = 0 by our assumption that µs(Q0) = 1.
We claim that the random variables Xk are uncorrelated, i.e. E(XiXj) = E(Xi)E(Xj)

for all i ̸= j. For each j ≥ 1, Xj is constant on each cube R ∈ Childj(Q0) and the value
Xj(R) that it takes can be computed knowing only type of child that R is:

(5.23) Xj(R) =


logb(1/α) when R ∈ Outer(R↑),
logb(1/βQ) when R ∈ Inner(R↑) \ {R↑↓},
logb(1/γQ) when R = R↑↓.

Thus, by (5.5) and (5.14), we obtain

(5.24) E(Xj) =
∑

Q∈Childj−1(Q0)

∑
R∈Child(Q)

Xj(R)µ(R) =
∑

Q∈Childj−1(Q0)

hb,LQ,MQ
(α, βQ)µs(Q) = sj.

A similar computation shows that E(XiXj) = sisj when 1 ≤ i < j. Indeed, since Xi takes
constant values on each cube in ∆i and Xj takes constant values on each cube in ∆j, and
j > i, we witness that

E(XiXj) =
∑

P∈Childi−1(Q0)

∑
Q∈Child(P )

∑
R∈Childj−1−i(Q)

∑
S∈Child(R)

Xi(Q)Xj(S)µs(S)

=
∑

P∈Childi−1(Q0)

∑
Q∈Child(P )

Xi(Q)
∑

R∈Childj−1−i(Q)

hb,LR,MR
(α, βR)µs(R)

=
∑

P∈Childi−1(Q0)

∑
Q∈Child(P )

Xi(Q)µs(Q)sj

= sisj.

(5.25)
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Because the random variables Xk are uncorrelated and are uniformly bounded in L2

(as they are uniformly bounded in L∞), the strong law of large numbers (see e.g. [Chu01,
Theorem 5.1.2]) ensures that

(5.26) lim
k→∞

Sk − E(Sk)

k
= 0 at µs-a.e. x ∈ Q0.

Combining (5.22), (5.24), and (5.26), we conclude that at µs-a.e. x ∈ Q0,

lim inf
k→∞

log µs(Qk(x))

log(b−k)
= lim inf

k→∞

1

k

k∑
j=1

E(Xj) = lim inf
k→∞

1

k

∞∑
j=1

sj and

lim sup
k→∞

log µs(Qk(x))

log(b−k)
= lim sup

k→∞

1

k

k∑
j=1

E(Xj) = lim sup
k→∞

1

k

∞∑
j=1

sj. □

It is now an easy matter to note the existence of doubling measures with prescribed
Hausdorff and packing dimensions; see [Wu98], [BG00], [KRS12], [MS09] for related results
on complete doubling metric spaces, which always support a doubling measure [LS98],
[VK87]. While the authors would not be surprised to find that Theorem 5.7 is already
known, they could not find a reference for it in the literature.

Theorem 5.7. Let X be a complete Ahlfors q-regular metric space. For any four numbers
d∗, d

∗, D∗, D
∗ satisfying 0 < d∗ ≤ d∗ ≤ q, 0 < D∗ ≤ D∗ ≤ q, d∗ ≤ D∗, and d∗ ≤ D∗, and

d∗ = q ⇔ D∗ = q and d∗ = q ⇔ D∗ = q, there is a doubling measure µ on X such that

(5.27) dimH µ = d∗, dimH µ = d∗, dimP µ = D∗, dimP µ = D∗.

Proof. If diamX = 0, the conclusion is trivial. Thus, after scaling the metric if necessary,
we may suppose that diamX ≥ 2.1. Because the sum of two doubling measures is again
a doubling measure, it suffices to prove that for any 0 < d ≤ D ≤ q with d = q ⇔ D = q,
there exists a doubling measure µ on X such that dimH µ = dimH µ = d and dimP µ =
dimP µ = D. If d = D = q, then we may simply take µ to be any Ahlfors q-regular measure
on X. Otherwise, 0 < d ≤ D < q. Choose any sequence s = (sk)

∞
k=1 taking values in

{d,D} such that lim infk→∞ k−1(s1+ · · ·+sk) = d and lim supk→∞ k−1(s1+ · · ·+sk) = D.
Let µ = µs be a quasi-Bernoulli measure with target dimensions s, built using a system
of b-adic cubes with scaling factor b satisfying 2e2 logb(e

2) ≤ s∗(
1
2
− 1

e
) = d(1

2
− 1

e
).

Then µ exists and is doubling by Lemma 5.5 and has Hausdorff dimension d and packing
dimension D by Lemma 5.6. □

Because the construction of the quasi-Bernoulli measure µs demands that we take b ↑ ∞
as s∗ ↑ q (see Corollary 4.9), we do not currently know how to build a doubling measure
µ on a complete Ahlfors q-regular space such that dimH µ = dimH µ < q = dimP µ =
dimP µ. Despite this technical obstruction, we cannot think of a compelling reason why
such a measure should not exist.

Conjecture 5.8. Theorem 5.7 also holds without the requirement that d∗ = q ⇔ D∗ = q
and d∗ = q ⇔ D∗ = q.
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To establish the rectifiability of quasi-Bernoulli measures (see §6), we need two more
estimates. For all Q ∈ ∆ and for all integers n ≥ 1 and 0 ≤ k ≤ n, define

(5.28) KQ(n, k) := {R ∈ Childn(Q) : cc(Q,R) ≥ n− k},
where cc(Q,R) is given by (4.1). That is, the collection KQ(n, k) consists of all n-th
generation descendants of Q such that at least n−k members in the chain of descendants
between Q and R were the central child of their parent. Note that #KQ(n, 0) = 1,
KQ(n, n) = Childn(Q), and KQ(n, k − 1) ⊂ KQ(n, k) for all 1 ≤ k ≤ n.

Lemma 5.9 (measure concentration). Let Q ∈ ∆, let 0 < t < 1, and suppose that
µs(R

↓) ≥ (1 − t)µs(R) for all R ∈
⋃n−1

j=0 Child
j(Q), where Child0(Q) = {Q}. If n and k

are positive integers and tn ≤ k ≤ n, then

(5.29) µs (
⋃

KQ(n, k)) ≥ µs (
⋃

KQ(n, k − 1)) ≥

(
1− exp

(
−n

2

[
k

n
− t

]2))
µs(Q).

Proof. The first inequality in (5.29) is trivial and is recorded for the convenience of apply-
ing the lemma in §6. As to the main matter, we will derive the second inequality in (5.29)
from Azuma’s inequality, a standard measure concentration estimate for martingales with
bounded differences (see e.g. [CL06, top of p. 96]). Let P denote the Borel probability
measure (µs(Q))−1µs Q and let E denote its expectation. For each integer 1 ≤ j ≤ n,
define the random variable

Yj :=
∑

R∈Childj(Q)

ci(R)χR =
∑

S∈Childj−1(Q)

χS↓ .

That is, Yj is the sum of indicator functions for j-th generation descendants of Q that are
the central child of their parents. By the hypothesis on the measure of central children,
we have 1− t ≤ E(Yj) ≤ 1 for all j ≥ 1 and

Q \
⋃

KQ(n, k − 1) = {x ∈ Q :
∑n

j=1 Yj(x) ≤ n− k}.

Next, define random variables X0 ≡ 0 and Xj :=
∑j

i=1 (Yi − E(Yi)) for all j ≥ 1. Then
the sequence X0, X1, · · · is a martingale with respect to the filtration (Fj)

∞
j=0, where Fj

is the σ-algebra generated Childj(Q). Moreover, for all j ≥ 1, cj := ∥Xj − Xj−1∥∞ =
∥Yj − E(Yj)∥∞ ≤ 1. Suppose that k − nt ≥ 0. Then, by Azuma’s inequality,

P
(∑n

j=1 Yj ≤ n− k
)
= P

(
Xn ≤ n− k −

∑n
j=1 E(Yj)

)
≤ P (Xn −X0 ≤ − [k − nt])

Azuma

≤ exp

(
− [k − nt]2

2
∑n

j=1 c
2
j

)
≤ exp

(
−n

2

[
k

n
− t

]2)
.

This yields (5.29). □

Lemma 5.10 (cardinality estimate). Let Q ∈ ∆ and let n ≥ 1. Suppose that N̂ is a
positive number such that

(5.30) max
{
NR : 0 ≤ i ≤ n− 1, R ∈ Childi(Q)

}
≤ N̂ , where NR = #Child(R).
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If n and k are positive integers with k ≤ nN̂/(N̂ + 1), then

(5.31) #KQ(n, k) ≤ N̂k nn

kk(n− k)n−k
≤ bn((k/n) logb(N̂)+logb(2)) for all b > 1.

Proof. Let 1 ≤ k ≤ n. Since KQ(n, k) =
⋃n

i=n−k{R ∈ Childn(Q) : cc(Q,R) = i}, for any
real-valued x ≥ 1, we may bound

#KQ(n, k) ≤
n∑

i=n−k

(
n

i

)
N̂n−i =

k∑
j=0

(
n

j

)
N̂ j ≤

n∑
j=0

(
n

j

)
N̂ jxk−j = xk−n(x+ N̂)n =: f(x).

The function f : (0,∞) → R has a unique critical point

x0 =
N̂(n− k)

k

and x0 ≥ 1 precisely when k ≤ nN̂/(N̂ + 1). Since limx→0+ f(x) = limx→∞ f(x) = ∞,
the first upper bound on #KQ(n, k) in (5.31) is achieved by choosing x = x0. The second
bound in (5.31) follows by expanding k = (k/n)n, writing x = blogb(x), and applying the
entropy bound ϵ logb(1/ϵ) + (1− ϵ) logb(1/(1− ϵ)) ≤ logb(2) for all 0 < ϵ < 1. □

Remark 5.11. Lemma 5.9 requires a lower bound k ≳t n whereas Lemma 5.10 requires an
upper bound k ≲N̂ n.

6. Proof of Theorem 1.1

Suppose that X is a complete Ahlfors q-regular metric space, m ≥ 1 is an integer with
q > m − 1, and 0 < sH ≤ sP < q are real numbers with m − 1 < sP < m. Without loss
of generality, we may assume that diamX ≥ 2.1. Let ν be any doubling measure on X.
Let b ≥ 47 be large and fixed, ultimately depending on at most q, sH , sP , and X. Let
(∆k)k∈Z be any system of b-adic cubes for X (see §4.1). By Lemma 4.6 and Lemma 4.7,
there exists CX > 1 such that for all Q ∈ ∆+ =

⋃∞
k=0 ∆k and j ≥ 1,

(6.1) C−1
X bjq ≤ #Childj(Q) ≤ CXb

jq and #Inner(Q) ≥ C−1
X bq.

Let s = (sk)
∞
k=1 be a sequence of numbers taking values in [sH , sP ] such that

s∗ = inf
k≥1

sk = sH = lim inf
k→∞

1

k

k∑
j=1

sj,(6.2)

s∗ = sup
k≥1

sk = sP = lim sup
k→∞

1

k

k∑
j=1

sj.(6.3)

Let α > 0 be small and fixed, ultimately depending on at most q, sH , sP , b, and X. Finally,
let µs be the quasi-Bernoulli measure with target dimensions s, background measure ν,
and outer weight α as in Definition 5.4. To prove the theorem, we show that (1.2)–(1.7)
hold with µ = µs. A lot of the work has been done already. For large enough b, the
measure µs is doubling in the sense of (1.2) by Lemma 5.5 and µs satisfies (1.3) and (1.4)
by Theorem 4.10, Lemma 5.6, (6.2), and (6.3). As we already noted in the introduction,
µs is purely (m − 1)-unrectifiable in the sense of (1.5), because dimP µs = sP > m − 1
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and Lipschitz images of subsets of Rm−1 have packing dimension at most m− 1. Finally,
we will prove (1.6) in §6.1 and prove (1.7) in §6.2.

6.1. Rectifiability. We would like to prove that µs is m-rectifiable in the sense of (1.6).
Since ∆0 is countable and covers X, it suffices to fix Q0 ∈ ∆0 and prove that µs Q0 is
m-rectifiable. Further, it is enough to fix 0 < θ < 1 (close to 1) and find a tree of sets
T =

⋃∞
l=0 Tl such that µs(Leaves(T )) > θµs(Q0) and Leaves(T ) lies in the image of some

Lipschitz map f : E ⊂ [0, 1]m → X.
Definition of T . For the remainder of §6.1, we fix any number τ = τ(q,m, sP ) > 0

satisfying

(6.4) (1 + 3τ)
sP
m

< 1 and a := (1 + 2τ)
sP
q

∈ Q ∩ (0, 1).

Write a = u/v in reduced form, i.e. u, v ∈ Z, v ≥ 1, and gcd(u, v) = 1. Let n0 ≥ v be a
large integer such that n0 ≡ 0 (mod v). For all i ≥ 1, we put ni := in0 and ki := ani.
Since v divides ni, we get that ki is also an integer. We build T using induction. Initialize
T0 = {Q0}. Then, assuming that the level Tj of T has been defined for some j ≥ 0, define
the next level Tj+1 by specifying that

(6.5) ChildT (Q) ∩ Tj+1 = KQ(nj+1, kj+1) for all Q ∈ Tj,

with KQ(n, k) as in (5.28). Note that

(6.6) sideQ = b−(n1+···+nj) = b−
1
2
j(j+1)n0 for any j ≥ 0 and Q ∈ Tj.

We show that Leaves(T ) has significant measure. In view of (6.1), by taking b to be
large enough depending only on q, CX, and τ (hence only on q, CX, m, and sP ) and α > 0
to be sufficiently small depending on q, CX, b, and τ (hence only on q, CX, b, m, and sP ),
we may arrange things so that for all Q ∈ ∆+,

(6.7) LQα +
sP − LQα logb(1/α)

logb(MQ − 1)
≤ CXb

qα +
sP

q − logb(2CX)
≤ (1 + τ)

sP
q

=: t,

where LQ = #Outer(Q) and MQ = #Inner(Q). Since kj+1/nj+1 = a = t + τsP/q > t,
from (5.6), (5.29), and (6.7), we conclude that for all j ≥ 0 and all Q ∈ Tj,

(6.8) µs (
⋃

KQ(nj+1, kj+1)) ≥
(
1− exp

(
−nj+1

τ 2s2P
2q2

))
µs(Q).

Thus, by continuity from above,

(6.9) µs(Leaves(T )) = lim
j→∞

µs (
⋃
Tj) = µs(Q0)

∞∏
i=1

(
1− exp

(
−in0

τ 2s2P
2q2

))
> 0,

where the infinite product is positive, since 0 < c := exp(−n0τ
2s2P/(2q

2)) < 1. As the
parameter n0 → ∞, the number c → 0 and the infinite product in (6.9) tends to 1.
Therefore, by taking n0 to be large enough depending only on q, sP , τ , and θ (hence only
on q, m, sP , and θ), we obtain µs(Leaves(T )) ≥ θµs(Q0).

We show that Leaves(T ) is contained in a Lipschitz image of E ⊂ Rm. Write N̂ := CXb
q.

Taking b to be large enough depending only on CX, q, sP , and τ (hence only on CX, q,
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sP , and m) ensures that a = (1 + 2τ)sP/q < N̂/(N̂ + 1). By Lemma 5.10, for all j ≥ 0
and Q ∈ Tj,

(6.10) #ChildT (Q) = #KQ(nj+1, kj+1) ≤ b(j+1)n0((1+2τ)(sP /q) logb N̂+logb(2))

Note that logb(N̂) = q+logb(CX). Increasing the scaling factor b as necessary (depending
only on q, CX, m, and sP ), we can arrange for (1 + 2τ)(sP/q) logb(CX) + logb(2) ≤ τsP .
Then

(6.11) Nj = max
Q∈Tj

#ChildT (Q) ≤ b(j+1)n0(1+3τ)sP , Dj = max
Q∈Tj

diamQ ≤ 2Cb b
− 1

2
j(j+1)n0 .

Hence

(6.12) Š =
∞∑
j=0

(
j∏

i=0

N
1/m
i

)
Dj ≤ 2Cb

∞∑
j=0

b
1
2
n0[(j+1)(j+2)(1+3τ)(sP /m)−j(j+1)].

Because η := 1− (1 + 3τ)sP/m > 0, see (6.4), the expression in square brackets

[· · · ] ≤ −ηj2 +O(j) ≤ −1

2
ηj2 for j ≫η 1.

(Here the big-O notation means O(j) ≲ j for all j ≥ 1.) Thus, we certainly know that
Š < ∞. We are almost ready to invoke Theorem 2.5.

To proceed, note that for any j ≥ 0 and any Q ∈ Tj, we can bound

(6.13) Nj ≥ #ChildT (Q) = #KQ(nj+1, kj+1) ≥ #Child
kj+1

∆ (Q) ≥ C−1
X b(j+1)n0(1+2τ)sP ,

where the final inequality is by (6.1). (The penultimate inequality holds, because there is

a bijection between Child
kj+1

∆ (Q) and the set of all R ∈ Child
nj+1

∆ (Q) such that ci(R) = 1
and whose nj+1 − kj+1 − 1 immediate ancestors P also satisfy ci(P ) = 1.) It follows that

C =
∑∞

j=0N
−1/m
j < ∞, and thus, in addition to Š < ∞, we have

(6.14) S =
∞∑
j=0

(
j∏

i=0

⌈N1/m
i ⌉

)
Dj ≤ eCŠ < ∞

by Remark 2.6. Therefore, by Theorem 2.5, there exists a compact set E ⊂ Rm and a
Lipschitz map f : E → X such that f(E) ⊃ Leaves(T ). This completes the proof of (1.6).

6.2. Doubling measures on Rd vanish on porous sets. To complete the proof of the
theorem, all that remains is to verify (1.7). The argument is now standard. Assume that
X = Rd and 1 ≤ m ≤ d − 1. Let µ be any doubling measure on Rd with full support.
If g : Rm → Rd is a bi-Lipschitz embedding, then Σ = g(Rm) is m-Ahlfors regular. In
particular, dimA Σ = m ≤ d − 1. More generally, suppose that Σ ⊂ Rd is any set with
dimA Σ < d. By [Luu98, Theorem 5.2], Σ ⊂ Rd and dimAΣ < d imply that Σ is porous
in the sense that there exists 0 < ϵ < 1 such that

for all x ∈ Σ and r > 0, there exists a ball B(y, ϵr) ⊂ B(x, r) such that
B(y, ϵr) ∩ Σ = ∅.
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Let x ∈ Σ, let r > 0, and let B(y, ϵr) be the ball given by the porosity condition.
Since µ is doubling and y is in the support of µ (simply because sptµ = Rd), we have
µ(B(x, r) \ Σ) ≥ µ(B(y, ϵr)) ≳ µ(B(y, 2r)) ≥ µ(B(x, r)), where the implicit constant
depends only on ϵ and the doubling constant for µ. Thus, on the one hand,

(6.15) lim
r↓0

µ(B(x, r) \ Σ)
µ(B(x, r))

= 0

fails at every x ∈ Σ. On the other hand, by the Lebesgue-Besicovitch differentiation
theorem for Radon measures (applied to the characteristic function χRd\Σ), we know that
(6.15) holds at µ-a.e. x ∈ Σ (see e.g. [Mat95, Corollary 2.4]). Therefore, µ(Σ) = 0.

References

[AK00] Luigi Ambrosio and Bernd Kirchheim, Rectifiable sets in metric and Banach spaces, Math.

Ann. 318 (2000), no. 3, 527–555. MR 1800768

[AM16] Jonas Azzam and Mihalis Mourgoglou, A characterization of 1-rectifiable doubling measures

with connected supports, Anal. PDE 9 (2016), no. 1, 99–109. MR 3461302

[AM22] Gioacchino Antonelli and Andrea Merlo, On rectifiable measures in Carnot groups: Marstrand-

Mattila rectifiability criterion, J. Funct. Anal. 283 (2022), no. 1, Paper No. 109495, 62.

MR 4405432

[AO17] Giovanni Alberti and Martino Ottolini, On the structure of continua with finite length and

Golab’s semicontinuity theorem, Nonlinear Anal. 153 (2017), 35–55. MR 3614660

[AS18] Jonas Azzam and Raanan Schul, An analyst’s traveling salesman theorem for sets of dimension

larger than one, Math. Ann. 370 (2018), no. 3-4, 1389–1476. MR 3770170

[Bad19] Matthew Badger, Generalized rectifiability of measures and the identification problem, Complex

Anal. Synerg. 5 (2019), no. 1, Paper No. 2, 17. MR 3941625

[Bat22] David Bate, Characterising rectifiable metric spaces using tangent spaces, Invent. Math. 230

(2022), no. 3, 995–1070. MR 4506771

[Bee93] Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications,

vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778

[BG00] Per Bylund and Jaume Gudayol, On the existence of doubling measures with certain regularity

properties, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3317–3327. MR 1676303

[BH10] Imen Bhouri and Yanick Heurteaux, Measures and the law of the iterated logarithm, preprint,

arXiv:1004.1501, 2010.

[BHS23] David Bate, Matthew Hyde, and Raanan Schul, Uniformly rectifiable metric spaces: Lipschitz

images, bi-lateral weak geometric lemma and corona decompositions, preprint, arxiv:2306.12933,

2023.
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[KRS13] Antti Käenmäki, Tapio Rajala, and Ville Suomala, Local multifractal analysis in metric spaces,

Nonlinearity 26 (2013), no. 8, 2157–2173. MR 3078111

[Ler03] Gilad Lerman, Quantifying curvelike structures of measures by using L2 Jones quantities,

Comm. Pure Appl. Math. 56 (2003), no. 9, 1294–1365. MR 1980856 (2004c:42035)

[LS98] Jouni Luukkainen and Eero Saksman, Every complete doubling metric space carries a doubling

measure, Proc. Amer. Math. Soc. 126 (1998), no. 2, 531–534. MR 1443161

[Luu98] Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous

measures, J. Korean Math. Soc. 35 (1998), no. 1, 23–76. MR 1608518

[LW04] Ka-Sing Lau and Xiang-Yang Wang, Iterated function systems with a weak separation condition,

Studia Math. 161 (2004), no. 3, 249–268. MR 2033017

[Mat95] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in

Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and

rectifiability. MR 1333890 (96h:28006)

[Mat23] Pertti Mattila, Rectifiability—a survey, London Mathematical Society Lecture Note Series, vol.

483, Cambridge University Press, Cambridge, 2023. MR 4520153

[MM67] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967),

103–110. MR 215197

[MM68] A. Meir and L. Moser, On packing of squares and cubes, J. Combinatorial Theory 5 (1968),

126–134. MR 229142
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